

The Pre -Engineering Instructional and Outreach Program at the New Jersey Institute of Technology

John D. Carpinelli Levelle E. Burr-Alexander Deran Hanesian Howard Kimmel Raj S. Sodhi New Jersey Institute of Technology Newark, NJ 07102 USA

Outline

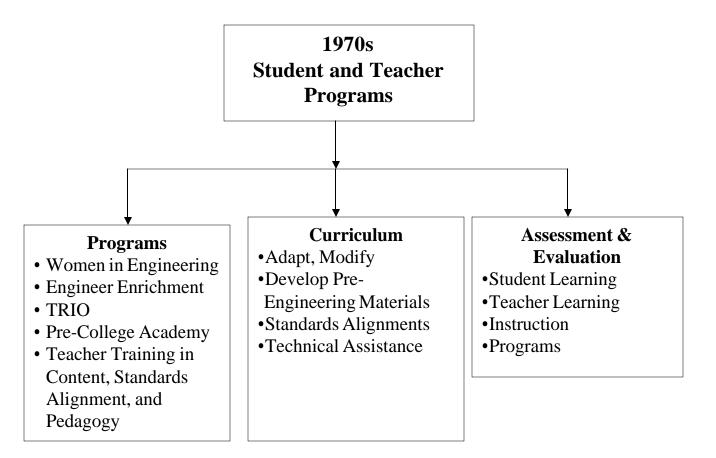
n Introduction

- n Center for Pre-College Programs
- n The Pre-Engineering Instructional and Outreach Program

n Instructional Modules:

- n Chemical Engineering
- n Electricity & Magnetism
- n Machines & Energy
- n Evaluation
- n Summary

The Center for Pre -College Programs



A Center for Education, Research & Service

Center for Pre-College Programs A Center for Education, Research & Service

Center for Pre -college Programs ' Mission

- n Establish coordinate, and assess academic programs to serve elementary and secondary school students and teachers
- n Improve the quality of education in the elementary and secondary schools of urban districts; and
- n Ensure that adequate resources and financial support are available to support the Center's programs.

Thrusts of the Center for Pre -college Programs

- n Teaching, Curriculum Reform & Standards
- n Professional Development Programs
- n Science & Math for Special Education Populations.
- n National Trio Programs
- n Women in Engineering & Technology
- n Bridge to Engineering Programs
- n Pre-College Academies and 12th Grade Option

Some students

FEMME, '96, '97, '98 Participant

- An eighth -grader at South Orange Middle School, in South Orange, N.J., says, "The FEMME program opened my eyes to new things, making me realize that any one – even women – can do what ever they want as long as they try."

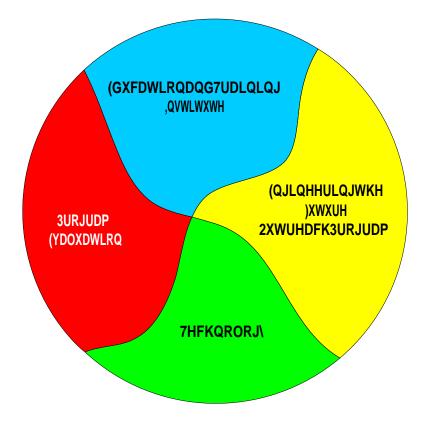
EMSCP, '97, Participant

- A ninth-grader from Newark says, "NJIT was not only a summer program, but was a place where I really enjoyed myself, EMSCP gave me a chance to learn about difference careers and meet new people."

IChIME, '97, UCESI, '98 Participant

- A 10th –grader at Montclair Kimberley Academy says, "I really enjoyed the programs as they helped me decide on a career in engineering."

NJIT


The Pre-engineering Instructional & Outreach Program (PrE-IOP)

- n A collaborative effort of Newark College of Engineering and the Center for Pre-college Programs.
- n A program designed to enlarge the future pool of qualified high-tech workers by:
 - n adapting pre-engineering curricula for middle and high school science classrooms and teacher training; and
 - n providing a comprehensive information campaign about the rewards of science, engineering, mathematics and technology (SMET) professions.

PrE-IOP Structure

Instructional Component

- n Curriculum development focusing on teaching preengineering skills, while integrating science, math, and technology instruction aligned with the Standards.
- n Adaptation of instructional materials as a complete engineering curriculum (E.g., PLTW) or as modules.
- Number teacher training institutes on the use of modules or pre-engineering curriculums and meeting the Standards.
- n Follow-up provided through the WWW and classroom visits by NJIT faculty and staff.

Examples of ICMs

n High School (Grades 9-12)

- n Integrating Chemical Engineering in High School Science
- n Biomedical Engineering
- n Civil Engineering Structures
- n Integrating Engineering into High School Mathematics
- n Middle School (Grades 6-8)
 - n Machines in Energy
 - n Electricity & Magnetism
 - n Vehicular Motion

Outreach Component

- N Use state-of-the-art multimedia presentations, videos, interactive CD-ROMs, web sites, and informational and career conferences.
- n Exploration of SMET careers featuring profiles of professionals while offering advice on career preparation.

Integrating Chemical Engineering into High School Science

- n 2-week short course for high school teachers (grades 9-12)
- n Exploring chemical engineering applications as vehicle to enhance science instruction

Connecting the Scientific Concepts with Engineering Applications

- **n** Select process for a well-known product.
- n Relate concepts taught in high school science to chemical engineering practice.
- n Provide "hands-on" projects, lab experiments, and activities that can be taken back to the high school science classroom.

Using the Aspirin manufacturing process, the module focuses on

- n Science concepts taught in high schools
- n Relevance to chemical engineering principles; e.g.,
 - n Material Balances
 - n Energy Balances
 - n Heat, mass and momentum transfer (fluid flow)
 - n Reaction Kinetics
 - n Separations

"Selected" Unit Operations

n Heat Exchanger
n Agitation and Mixing
n Dissolution Vessel
n Chemical Reactor
n Crystallization Vessel
n Distillation Units

All Chemical Processes are composed of Three Key Components

- n Pre-Reaction Physical Preparation Steps
- n Reaction Steps
- n Post-Reaction Physical Separation Steps

Integration of Chemical Engineering into the Science Classroom

Chemical Engineering – the Applied Science	Chemistry – the Basic Science
Material Balancing	Stoichiometry Chemical Equations
Energy Balances Heat Transfer (e.g., heat exchangers)	Thermochemistry and Thermodynamics
Multiphase Systems Separation Processes (e.g., extraction, distillation)	States of Matter Physical Equilibria
Reactor Design (Isothermal & non-isothermal systems, fluid flow, concentration gradients)	Rates of Reactions (Parameters affecting reaction kinetics – e.g. concentration, temperature, solubility)

Electricity and Magnetism

n 2-week short course for middle school teachers (grades 5-8)

n Three sections

- n Introduction to engineering
- n Electricity and magnetism
- n Boolean logic and digital circuits

Electricity and Magnetism

n Introduction to Engineering

- n Engineers in society and everyday life
- n Case studies
- n Problem solving process
- n Greatest Engineering Achievements of the 20th Century (NAE)
- n Paper drop competition

Electricity and Magnetism

n Electricity

- n Basics: electrons, charge, current, voltage
- n Resistance: Ohm's Law, series and parallel resistance
- n Laboratory experiments
- n Magnetism
 - n In nature and in everyday life
 - n Laboratory experiments

Boolean Logic and Digital Circuits

n Basic Boolean functions

n AND, OR, XOR, NOT

n Compound Boolean functions

n Real-world situations

n More complex digital components

n Registers, decoders, counters, and multiplexers

n Laboratory experiments

Machines and Energy

n 2-week short course for middle and high school teachers (grades 6-12)
n Mass, motion, work, power, energy
n Hands-on experience

Machines and Energy

- n What are science and engineering?n Engineering design
- n Simple machines
 - n Inclined plane, lever, wedge, screw, pulley, wheel and axle
- n Mechanisms and robots

Machines and Energy

n Complex machines
n Work and power
n Types of energy
n Storing energy
n Environmental impact

Readiness to Teach Machines and Energy

Item: How ready are you to teach about	I would have to start from scratch	I would more training on the topic	I would have to look at my notes.	I could teach a lesson on this topic tomorrow.
Engineering Design	6.3 (1)	25 (4)	56.3 (9)	12.5 (2)
Work & Power		12.5 (2)	31.3 (5)	56.3 (9)
Simple Machines		6.3 (1)	25 (4)	68.8 (11)
Machine Design		43.8 (7)	50 (8)	6.3 (1)

Acknowledgments

Funding for the Pre-Engineering Instructional and Outreach Program was provided by a grant from the New Jersey Commission on Higher Education through its Workforce Development Program

