
Session R1H

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

R1H-12

Graphing Performance on Programming Assignments
to Improve Student Understanding

Stephen H. Edwards, Manuel A. Pérez-Quiñones, Matthew Phillips, and Johnny RajKumar

Department of Computer Science, Virginia Tech, 660 McBryde Hall (0106),
Blacksburg, VA 24061 {edwards, perez}@cs.vt.edu, {mphillip, johnny}@vt.edu

Abstract - Within computer science education, automated
grading systems are used by many institutions. This paper
summarizes an investigation into how the data collected by
an electronic submission system can be used to aid
students and instructors. Rather than simply providing
feedback on a single submission, a grading system can give
a student summary information about individual
improvement over time, as well as where the student
stands with respect to his or her peers. We explore
graphical presentations—in the form of bar charts,
histograms, and line charts—of a student’s personal
progress over time, as well as the student’s current
performance in relationship to the remainder of the class
body. Particular attention is paid to how graphs can help
the student understand likely future outcomes on
assignments based on current effort expended, and on
“calibrating” one’s own understanding of how the rest of
the class is performing.

Index Terms - Computer science education, automated
grading, information visualization, learning management
systems, Web-CAT.

INTRODUCTION

Within computer science education, automated grading
systems have been in use for many years at a variety of
institutions. Such systems allow students to submit
programming assignments, which are then compiled,
executed, and automatically assessed. Automated tools can
provide directed, concrete feedback to students with rapid
turn-around times, increasing the number of feedback cycles
students participate in.

This paper reports on a preliminary investigation into how
the data collected by an electronic submission system can be
used to aid students and instructors. Rather than simply
providing feedback on a single submission, a grading system
can give a student summary information about individual
improvement over time, as well as where the student stands
with respect to his or her peers. To this end, we explore
graphical presentations—in the form of bar charts, histograms,
and line charts—of a student’s personal progress over time, as
well as the student’s current performance in relationship to the
remainder of the class body. The paper examines in detail
four visualizations that were created for student use, and four
visualizations created for instructor tracking purposes.

Particular attention is paid to how graphs can help the student
understand likely future outcomes on assignments based on
current effort expended, and on “calibrating” one’s own
understanding of how the rest of the class is performing.

The graphical visualizations discussed were implemented
in an existing automated grading system that is used by the CS
departments at several universities. Experiences with these
visualizations in the classroom are discussed, together with the
results of a survey of undergraduate student reactions to the
graphs. While the work is discussed in the context of
computer science courses, similar techniques can also be
applied to help students visualize performance on other kinds
of assignments in other disciplines, perhaps as a course
management system feature.

BACKGROUND AND RELATED WORK

Web-CAT is an automatic grading system that evaluates
student programming projects [2] [3]. One of Web-CAT’s
most prominent features is that it allows instructors to set up
assignments that require students to submit test cases along
with their programs so that both can be graded together. Once
the student submits their program and its test cases to Web-
CAT, Web-CAT grades their submission and immediately
returns scoring information to the student. If the student isn’t
happy with her score, she can alter her program and/or her test
cases and resubmit to Web-CAT. Students are allowed
multiple submissions for each programming project.

Prior to the work reported in this paper, when Web-CAT
would return a submission score to a student, he/she would not
receive any information about how others had performed, such
as the average submission score for the class, how one’s
submission scores have improved over time, or where the best
opportunities for improvement were. The lack of such
information limits the student’s insights into their progress. In
this paper we present visualizations that have been added to
Web-CAT to aid students.

Course management systems (CMS) help facilitate online
student learning and management of large courses [1].
Systems like Web-CAT [2] [3] extend the traditional CMS by
providing automated grading for student programming
projects. This automated grading generates data on how the
student performed in relation to himself/herself and in relation
to his/her peers. It can be useful to visualize this grading data
in order to view trends and gain an understanding of how the
student is progressing in the course [4] [5] [6].

Session R1H

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

R1H-13

Visualizing information such as data logged from Web-
CAT can lead to the realization of trends in data.
Schneiderman [4] discusses that visualizations can provide a
much higher bandwidth of information when compared to
textual data. This higher bandwidth can allow users to quickly
scan data and look for changes in size, color, and shape.

While little or no specific work has been published on
creating visualizations for student progress in a course, Mazza
and Dimitrova [6] have examined visualizations in course
management systems (CMS). Their work focused on
visualizing log data generated by student activity (accessing of
web pages, participation in course discussion boards, etc.), but
they did touch on visualizing a student’s performance on
quizzes. They found that matrix plots were useful
visualizations. To build the matrix visualization, they entered
values associated with a student’s performance on a quiz and
mapped each value to a color in a range of colors from white
(being low performance) to black (being high performance).
Once these colors were shown graphically, it was easy to see
trends showing what concepts on the quizzes students didn’t
understand. We can use this visualization technique and this
research in general as a starting point for visualizing student
performance in Web-CAT.

INFORMING STUDENTS THROUGH VISUALIZATIONS

By creating visualizations for the student in Web-CAT, we
can increase the student’s understanding of how they are
performing on their current and past submissions, their current
and past assignments, and overall in the course.

In order to create the proper visualizations from the
proper data in Web-CAT we went through an iterative process

of discussing student needs with instructors that use Web-
CAT in their courses. The product of this iterative process was
a set of four refined graphs that visually provide valuable
information to the student. We then evaluated these
visualizations and proceeded to implement some of them and
add others.

I. Assignment Score Distribution for the Class

The first visualization that we made available to students is a
histogram titled Score Distribution for the Class. An example
of this graph is shown in Figure 1. The goal of this
visualization is to provide the student with an insight into how
he/she is performing on the current assignment when
compared to the rest of the class. We chose a standard
histogram format since most students are familiar with such
graphs and can interpret them readily. The student’s
individual performance is marked by a top-to-bottom red line
laid over the histogram’s broader bars.

Prior to this histogram, Web-CAT did not have any
method for showing a student how her/his score on an
assignment compared to the scores of his/her peers. The
students often would post in the forum questions like “I am
getting a 92, does anybody else have a score higher than that?”
Showing performance within the class allows the student to
assess their progress compared to their peers. We feel that this
histogram is an ideal way of showing the student this
information.

II. Opportunities for Improvement

The second visualization that we made available to students is
an area chart that shows opportunities for improvement,

FIGURE 1
THE STUDENT’S SCORE IS SHOWN IN THE CONTEXT OF THE TOTAL

DISTRIBUTION ACROSS THE CLASS.

FIGURE 2
A STACKED AREA CHART SHOWS BREAKDOWN OF POINTS LOST ON PAST

SUBMISSIONS, INDICATING OPPORTUNITIES FOR IMPROVEMENT.

Session R1H

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

R1H-14

illustrated in Figure 2. The goal of this visualization is to
provide the student with an insight into where he/she is losing
points over multiple submissions. During the submission
process, Web-CAT grades a submission for two items:
Coding/Style and Correctness/Testing. The Coding/Style
category is used to award points for things like documentation,
indentation, and general style. The Correctness/Testing
category is used to award points to students for things like
extensiveness of testing, error checking, and correctness of
behavior. Figure 2 shows a snapshot in time for a student who
has made a series of submissions over several days. The area
chart shows the amount of credit that has been lost for each of
the two assessment categories.

We have found students who leave the Coding/Style
portion of their work for late in the submission period may
scramble to do a good job. They often feel like the
documentation can be done at the end. This graph clearly
shows the relationship of the two parts of their grade. Students
should be able to see what area(s) they need to improve in
their submissions in order to get their desired grade. In
particular situations, this graph should help student see trends
in their programming habit. For example, a student might start
loosing Coding/Style points as he/she adds new functionality
without documenting it properly. At the same time, the new
functionality might afford the student higher points in
Correctness/Testing. Such a situation might produce the same
score as before, but this graph should communicate to the
student clearly how the composition of the score changed over
time.

III. Quartiles with Mean Score over Several Assignments

The third visualization that we made available to students,
shown in Figure 3, is a horizontal bar chart that is similar to
the traditional notion of a candlestick chart. The goal of this
visualization is to provide the student with a general idea of
how he/she is doing compared to his/her peers within each of
the assignments in the class. The horizontal bars appear in
Web-CAT’s interface when students are choosing among a list
of assignments, for example, when a student is selecting
among all past assignments to view feedback on a previous
submission.

Beside each listed assignment is a horizontal bar graph.
The outermost left and right red regions depict the lower and
upper quartiles. The green central region depicts the two
middle quartiles. The mean assignment score for the class is
drawn with a vertical yellow line that splits the green central
region into the second and third quartiles. Finally, the
student’s individual score appears as a vertical blue line
overlaying the graph.

Using these horizontal bar charts, the student can quickly
get a general idea of how he/she is performing compared to
his/her peers on various assignments.

IV. Projected Score for Next Submission

The fourth visualization that we designed is a line chart that
projects the score for a student’s next submission, as
exemplified in Figure 4. The goal of this visualization is
provide the student with an estimate of how he/she is likely to
perform on his/her next submission.

The projected scores are calculated by taking a sliding
window of previous scores and performing a simple linear
regression on those scores. From the linear regression we are
able to calculate and plot the next extrapolated point.
Obviously, the further the data is extrapolated, the higher the
error margin becomes. We explain to the student that the
projected points are prone to error.

FIGURE 3

A HORIZONTAL VARIANT OF A CANDLESTICK CHART DISPLAYS QUARTILES, THE MEAN, AND THE INDIVIDUAL STUDENT SCORE FOR EACH ASSIGNMENT.

FIGURE 4
A STATISTICAL PREDICTION OF PERFORMANCE ON THE NEXT SUBMISSION.

Session R1H

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

R1H-15

Having information on projected scores provides the
student with insight on how he/she should budget their time
for future submissions. That is, if the student is looking to get
a certain score on the assignment due date, he/she can get a
feeling for how many submissions he/she will need to make to
get that score if he/she continues at his/her current rate.

On a higher level, this visualization can provide insight to
the student about how he/she is refining his/her project for
each submission. For example, it can indicate to the student
that he/she should revise his/her programs more heavily
between submissions if he/she wants to see a greater increase
rate in his/her submission score.

INFORMATION FOR THE INSTRUCTOR

In addition to supporting students, we are also interested in
helping instructors manage their electronically graded
assignments. By creating visualizations for the instructor in
Web-CAT we can assist the instructor in managing student
progress on assignments and increase the instructors
knowledge of the problems that students face when trying to
complete an assignment.

In order to create the proper visualizations from the
proper data in Web-CAT we went through an iterative process
of discussing our and other instructor’s needs with the
instructors that use Web-CAT to manage programming
assignments in their courses. The product of this iterative
process is four refined visualizations that provide valuable
information to the instructor.

I. Class Performance on the Current Assignment

The first visualization that we made available to the instructor

is a histogram showing the score distribution for one
assignment across all students. This graph is nearly identical
to the student-oriented graph shown in Figure 1, except that
there is no marker for one’s individual score. This
visualization also provides class median and class average
scores below the title.

Using this histogram, the instructor can gain insight into
how a class is performing as a whole on the current
assignment. This visualization can help the instructor spot
problems with the assignment if the score distribution looks
odd. For instance, if it appears that no student is scoring higher
than 40%, this might indicate to the instructor that he/she has
an error in the program specification or that the class does not
understand a key concept.

II. Number of Submissions per Student

Figure 5 shows the second visualization for instructors, a
histogram showing the number of submission attempts
completed by each student, arranged in increasing order.
Web-CAT allows instructors to set limits on the number of
submissions a student can make for a given assignment, or
leave submissions unlimited. In Figure 4, each vertical bar
represents the submissions made by one student, and the
horizontal axis represents that students “rank” in terms of
number of submissions made. This graph gives an instructor a
better feel for both how many students have made
submissions, and the distribution of how many submissions
each student is making.

III. Number of Student Submissions across Time

Figure 6 shows the third visualization designed for instructor
use, a histogram that shows the number of student submission
across time. The goal of this visualization is to aid the
instructor in understanding student submission patterns,
particularly as an assignment deadline approaches. For
example, an instructor might want to know a week before the
deadline how many submissions have been made.

Using this histogram, an instructor is able to gain insight
into the submission patterns of students and adjust due dates,
early bonuses, and late penalties if needed. The instructor can

FIGURE 5
DISTRIBUTION OF THE NUMBER OF SUBMISSIONS MADE BY EACH STUDENT,

PLOTTED IN INCREASING ORDER.

FIGURE 6
INSTRUCTORS CAN VIEW CHANGES IN THE FREQUENCY OF STUDENT

SUBMISSIONS OVER TIME.

Session R1H

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

R1H-16

also identify situations when an unusual number of students
might be starting a project too late. This might lead to a
discussion in class to try to identify the problem.

IV. Score Progression over Time

Figure 7 presents the fourth instructor-oriented visualization,
which is a line chart that shows the minimum, mean and
maximum score achieved by anyone in the course over time.
The goal of this visualization is to help the instructor gain
insight into the range of student scores for the current
assignment, and how this distribution changes as an
assignment deadline approaches.

The maximum points are calculated by taking the highest
submission score by any student for that day. The minimum
points are calculated similarly. The average points are plotted
by taking the average of all the submission scores for that day.

Under normal circumstances, this graph should be
monotonically increasing. Using this line chart, the instructor
can gain insight into the spread of the class scores. This
insight may help an instructor guide a class along if he sees
that there are odd shapes to the graph. For example, if the
instructor sees that all three lines are very close together, he
might infer that there is a problem with the Web-CAT grading
or that the students are struggling with a certain key algorithm.

EVALUATION

We performed a preliminary evaluation of the visualizations
designed for student use presented above. For the evaluation
we used mock-up versions of the visualizations. We evaluated
the four student visualizations using two sections of a
sophomore Introduction to Object-Oriented Development
class at Virginia Tech. These sections regularly used Web-
CAT for all of their closed lab assignments and class projects.
The visualizations were evaluated on three different aspects:
clarity and intuitiveness, syntax, and usefulness. A total of 24
students completed the survey.

To test the clarity and intuitiveness of the visualization,
we asked the students to indicate how strongly they agreed
with the following statement: “This graph is clear and concise.
It is intuitive and stands on its own.” We used a Likert scale

with the following values: Strongly Disagree, Disagree,
Neither Agree nor Disagree, Agree, Strongly Agree.

We assessed the student’s understanding of the syntax of
each visualization by asking a question that required the
student to interpret the graph. For example, the question for
the Score Distribution for the Class graph (Figure 1) was
“How many students have a score between 60 and 80?” The
full set of task-oriented questions appear in Table 1.

TABLE I

 VISUALIZATION AND UNDERSTANDING EVALUATION
Visualization Question
Score Distribution for the
Class (Figure 1)

How many students have a score between
60 and 80?

Opportunities for
Improvement (Figure 2)

How many correctness/score points were
lost on the fourth submission?

Quartiles with Mean Score
over Assignments (Figure 3)

For Lab 1, is your score above or below
the mean?

Projected Score for Next
Submission (Figure 4)

What is the approximate projected score
for your the next submission

To test the usefulness of the graphs shown in Figures 1

and 3, we asked the student to indicate a level of agreement
with the following statement: “This graph would be useful in
Web-CAT when trying to determine how your score on the
current assignment compares to the scores of your
classmates.” We asked a very similar question for Figures 2
and 4, with the wording slightly changed to assess if the
visualization was useful when evaluating their own
submissions.

Students liked the class distribution histogram shown in
Figure 1. 19 out of 24 students agreed or strongly agreed that
it was both clear and intuitive and 21 out of 24 agreed that it
was useful. 19 out of 24 students answered the corresponding
question from Table 1 correctly, showing that they understood
the syntax.

Students were also for the most part in favor of Figure 2.
14 out of 24 students agreed or strongly agreed that it was
both clear and intuitive and 17 out of 24 agreed that it was
useful. 19 out of 24 students answered the corresponding
question from Table 1 correctly, showing that they understood
the syntax.

Students seemed to also favor Figure 3. 15 out of 24
students agreed or strongly agreed that it was both clear and
intuitive and 18 out of 24 students agreed or strongly agreed
that it was useful. 23 out of 24 students answered the
corresponding question from Table 1 correctly, showing that
they understood the syntax of Figure 3.

Students seemed to have mixed feelings about the
projection graph in Figure 4. 22 out of 24 students agreed or
strongly agreed that it was both clear and intuitive, but only 8
out 24 agreed or strongly agreed that it was useful. However,
the students seemed to understand the syntax of Figure 4 very
well, with 24 out of 24 answered the question from Table 1
correctly.

We believe that students were mixed on Figure 4 for two
reasons. First, the wording of the question was not as clear
and succinct as it should have been. Second, the visualization
is built to predict the score for the next submission. That is,

FIGURE 7
MINIMUM , AVERAGE AND MAXIMUM SCORES ACROSS ALL STUDENTS CAN BE

TRACKED OVER TIME TO GAUGE CLASS PROGRESS.

Session R1H

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

R1H-17

submission numbers are placed along the X axis. It might be
more useful if the visualization predicted scores according to
date, with dates placed along the X axis.

IMPLEMENTATION

As a result of the promising feedback from the student survey,
we have implemented several of the visualizations and are
now actively using them in class. Web-CAT is implemented
in Java, so we have used the JFreeChart library to generate
graphs dynamically from data stored in the system. Figures 1,
2, and 5 are actually live images produced by Web-CAT from
real submission data.

Because of the results of our preliminary evaluation, we
also made several changes to our visualizations. First, note
that the evaluation results indicated that students had mixed
feelings about the clarity and intuitive nature of the horizontal
bars in Figure 3, which were intended to summarize class
performance on a series of assignments. We surmised that this
may be due to the use of a candlestick-like depiction, since
such graphs are known to be less intuitive. As a result, we
modified the visualization when it was implemented, so that
Web-CAT would present the class distribution in the form of a
more traditional distribution histogram. Figure 8 shows the
result.

Second, the preliminary evaluation indicated that students
also had mixed feelings about the clarity and intuitiveness of
Figure 2, which shows points lost, or opportunities for
improvement. We surmised that this might be due to the fact
that the graph as shown is really a “negative” plot, since it
shows points lost rather than points earned. When we
implemented this visualization, we decided to generate two
versions of the graph: the first shows points earned broken
down by category, in the same format as Figure 2. The second
is the original visualization from Figure 2. Providing both
views allows students a more conventional view of the data
while also emphasizing the information content that originally
inspired Figure 2.

CONCLUSIONS AND FUTURE WORK

Augmenting Web-CAT with visualizations can help the
instructor and the student gain insights into their work in a
course. This was shown through the survey results and
through the informal discussions with instructors. Even though
we have improved Web-CAT by adding the visualizations,
there are several areas where additional work is possible.

The line chart projection shown in Figure 4 could be
improved so that it shows predicted submission scores for
dates. This will help the student know what their projected
score is on the assignment due date. This visualization has not
yet been implemented, but its value to students makes it a
prime future target.

The line chart summarizing class performance in Figure 7
could be improved so that it splits the range of student scores
up into quartiles and plots the quartiles in bands as a stacked
area chart. This visualization, along with the one in Figure 6,
remain to be implemented for instructors. Another possible
instructor-oriented visualization might show if there is any
correlation between a student’s score on an assignment and the
number of submissions the student made for that assignment.
This might be shown through a histogram or a scatter plot.
Alternatively, a variation on Figure 6 might show how many
unique users have made submissions over a period of time.

Overall, we have found that graphically depicting scoring
trends for individual students or an entire class can be a
powerful way to give both students and instructors a feel for
how they are making progress on a programming assignment.
This can significantly reduce student frustration by giving
them an accurate idea of how they are performing with respect
to the remainder of the class.

REFERENCES

[1] Reek, K.A. A software infrastructure to support introductory computer
science courses. In Proc. 27th SIGCSE Tech. Symp. Computer Science
Education, ACM, 1996, pp. 125 – 129.

[2] Edwards, S.H. Improving student performance by evaluating how well
students test their own programs. J. Educational Resources in
Computing, 3(3):1-24, Sept. 2003.

[3] Edwards, S.H. Using software testing to move students from trial-and-
error to reflection-in-action. In Proc. 35th SIGCSE Tech. Symp.
Computer Science Education, ACM, 2004, pp. 26-30.

[4] Shneiderman, B. The eyes have it: a task by data type taxonomy for
information visualizations. In Proc. IEEE Symp. Visual Languages,
IEEE, 1996, pp. 336-343.

[5] Naps, T., et al. Evaluating the educational impact of visualization. In
Proc. 4th Annual SIGCSE/SIGCUE ITiCSE Conf. Innovation and
Technology in Computer Science Education, ACM, 1999, pp. 143-146.

[6] Mazza, R. and Dimitrova, V. Visualising student tracking data to
support instructors in web-based distance education. In Proc. 13th Int’l
World Wide Web Conf. Alternate Track Papers & Posters (New York,
NY, USA, May 19 - 21, 2004), ACM, 2004, pp. 154-161.

FIGURE 8
A CROPPED PORTION OF A LIST OF ASSIGNMENTS SHOWS A MINIATURE SCORE

DISTRIBUTION HISTOGRAM, REPLACING THE PROTOTYPE SHOWN IN FIGURE 3.

