
International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
1

Interactive Applets for Introductory Courses on Computer Architecture

Authors:

Alberto González Téllez, Universidad Politécnica de Valencia, Valencia 46022, Spain agt@disca.upv.es
Juan Carlos Martínez González, Universidad Politécnica de Valencia, Valencia 46022, Spain jc@disca.upv.es

Abstract The basic concepts in the field of computer architecture have proved to be difficult to teach by just describing
them. The discrete nature of processor behaviour, and the lack of powerful abstract models for modelling this behaviour,
means that a complete detailed description is necessary. Many students find passive classroom study insufficiently motivating
and interesting - specially in subjects such as: assembly language programming, input-output management, data-path
behaviour, etc. To practice with real systems is the ideal solution but real systems are often costly or too complex. Interactive
simulators do not have these disadvantages and then they are a very valuable complement of lectures and readings, because
they allow the student to try and to see what happens. This interactive practice with a simplified representation of a
computer, that mimics a real one, increases the student interest in the field and makes his understanding more complete and
durable. We present a Java applet that supports student understanding of assembly language programming. After testing its
success among students it will serve as a base to develop more applets oriented to other computer architecture issues. We
have chosen Java technology because it is integrated in the web and then universally available. Java applets are also easier
to maintain and distribute than native applications, and they can be embedded in web documents.

Index Terms Computer architecture, interactive teaching tools, Java applets, simulation.

INTRODUCTION

Introductory courses in computer architecture are challenging due to the students lack of previous knowledge in the field and
the nature of the subject, quite different than more classic disciplines like physics, calculus, algebra, etc. Computer systems
are complex devices with a discrete behaviour, its complexity and non-continuos features take them apart from the kind of
systems (mechanical, electrical, etc) that the students are used to.

We find also that the state of the art does not provide with abstract tools to face the problem. Then the explanation of the
structure and the behaviour of computer systems is based on detailed descriptions. This tends to be inevitably boring and
useless if students are not able to “try and see”. In computer architecture is certainly true that the only way to achieve an
effective learning, particularly in introductory courses, is “learning by doing” because “learning by earring/reading” is
definitively insufficient.

Then the question is how to provide the students with tools that allow them to practice. The best choice in a first
approach is “real computers”, but this has two main disadvantages: real computers are too complex for being used in
introductory courses and they are expensive, and then their availability is limited. An alternative to real systems are
simulators, in fact they solve the two disadvantages mentioned, because the complexity can be limited and they have no cost
as freely available software.

After having chosen the simulator alternative there are some decisions that remain: to use already implemented
simulators or to design new ones, if a new one has to be implemented then a programming language has to be selected.
Unfortunately there are not enough simulators available to fit all the particular needs that can be found in teaching practice,
anyway this has to be the first attempt because it will avoid the expend of a lot of time on the teacher side. If this attempt is
unsuccessful then we have to decide what tools we will use to implement our custom simulator.

The tools available to design interactive simulators can be of two types: multimedia authoring tools and general purpose
programming environments. Multimedia authoring tools are much easier to use and are maybe the only feasible choice to non
programming experts. Unfortunately they have some disadvantages, they are very expensive and use proprietary formats.
Computer architecture teachers have the advantage of not being bound by this unique choice because they have a background
on general purpose programming languages. These environments are much more available and can be less platform
dependent, this is particularly true is we choose Java.

The Java language was born thinking on Internet instead of a particular operating system, then Java programs are
portable and even more they can be embedded in web pages, in the form of applets. There are also freely available
programming tools like Sun SDK[1] and particularly JBuilder Personal Edition from Borland[2]. The later one includes all

International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
2

the components required to design applets based on the AWT[3] and Swing toolkits, it also offers a very good visual
developing environment. This is the tool that we have decided to use to develop our simulators as Java applets.

Simulator applets can be used by means of Java aware web clients like Internet Explorer with Microsoft JVM or any
other navigator with a Java plug-in available (almost every one). This guaranties that students can use the simulator on lab
PCs and at home, even with modem connections due to the small size of applets (less than 100Kbytes). The only required
maintenance is on the server where the applets are installed. To avoid Internet connection applets can also be installed locally
by simply copying some files: the html file that embeds the applet, the applet library file and maybe some auxiliary files.

THE EASY8 COMPUTER

In this section, we explain the architecture of the Easy8 processor and a simple computer made upon it, also named Easy8.
First we describe the functional units of the Easy8 computer and the memory and input/output subsystems properties. Then
we explain the instruction formats and the instruction set.

Easy8 architecture

Easy8 is an academic processor, so we made it simple. Then we included an small number of registers and state bits. Easy8 is
an extension of the Easy4 processor [6]. Easy4 is a four-bit academic processor, whose register size is four bits, so the
address bus is also four bits wide. The main consequence of this limitation is the memory size that is just sixteen words. The
memory word width is four bits. The number of I/O ports is sixteen too. The number of instructions is limited to sixteen,
because the operation code in the instruction format is one word.

Easy8 uses eight-bit registers, so memory system size is 256-words, eight bits wide. The number of I/O ports also
increases to 256, and the Easy8 instruction set can have up to 256 instructions.

FIGURE 1
EASY8 COMPUTER COMPONENTS.

International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
3

In figure 1, we can see the Easy8 architecture. It is composed by three subsystems: Processor, Memory, and I/O system.
Memory system size is 256 bytes and I/O system has 256 ports, each port can transmit one byte. The I/O system defined in
the simulator has two devices. The first is a hexadecimal display that can show two hexadecimal digits. This device uses port
0 as an output port, so when the processor writes a word in this port the display shows this number using hexadecimal
representation. The second device is an input hexadecimal keyboard. This device uses port 1 as an input port. When the
processor reads this port the last two digits pressed, as a byte.

The processor has three registers. There is only one data register (RA) that acts as an accumulator register (source and
destination simultaneously). The Program Counter (PC) is used as a pointer to the next instruction to execute, this register is
incremented automatically by the processor at beginning of every instruction. The Stack Pointer (SP) is used to implement a
stack at the bottom of the memory space. SP is set to 0 when the processor is reset. Before inserting a word in the stack SP is
decremented by one. After extracting the last word inserted into SP is incremented by 1.

The system has two flags for arithmetic and compares: Carry (C) and Zero (Z) bits. The first one is set to the value of the
most significant carry bit of the arithmetic unit. The second one is set to one when the result of the last arithmetic operation is
zero, otherwise Z is set to zero.

Easy8 instruction set.

Before enumerating the instruction set of the Easy8 processor, we explain its instruction formats. The Easy8 processor uses
two instruction formats:

• One word instruction format: It uses only one byte that contains the operation code of the instruction. If any operand is
needed it has to be an implicit operand, usually RA.

• Two words instruction format: It uses two bytes. The first one is the operation code of the instruction. The second one
is an immediate or a direct operand. This operand is an eight-bit data or an eight bit address, respectively. If the
instruction uses more than one operand, the remaining operands have to be implicit operands (usually RA).

Next, we enumerate and explain every instruction of the Easy8 processor. The Easy8 instruction set has 22 instructions,
they are described in table 1.

USING THE EASY8 SIMULATOR

As you can see in figure 2, the simulator is made by four panels: Editor, Memory, Processor, and I/O devices. The first panel
is the assembler editor. Programmers can use the list and the buttons to insert, modify, and delete instructions in the editor.
Once the program is completely edited it can be assembled using the assemble button. If the virtual machine is properly
configured to allow file access, as described in table 2, then loading and writing files can be done by means of the load and
save buttons, naming the file in the text field “File”. The solution of the exercises proposed in the subject lectures are also
available selecting in the choice list “Exercises” then the solutions are loaded from the server and they appear in the choice
list.

The second panel shows the memory content. This window is split in two, in order to be able to show the contents of the
memory at the SP and PC pointers. Users can change the content of any word in memory using the Addr and Val fields and
the button OK at the bottom of the column.

The third panel shows the contents of the processor registers and flags. There are four buttons. The RUN button starts the
simulation of the program assembled, the simulation ends when a STOP instruction is executed or the STOP button is
pushed. The STEP button allows to execute the instruction pointed by PC. The RESET button sets the contents of every
processor register to zero, Z and C bits are also reset.

The last panel contains the I/O devices. The first I/O device is a hexadecimal display. When the processor writes a byte
to the output port 0, this byte is shown in the display. If the “No stop” box is not checked, the simulator pauses the program
until the user pushes the “Continue” button. The second device is a hexadecimal keyboard. This device is connected to the
input port 1. Simulation pauses when an input operation is made to the port 1. Then, the user has to introduce two digits in
the keyboard, pressing OK to advice the processor to continue.

International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
4

TABLE 1
EASY8 INSTRUCTION SET.

Group Instruction Operation
Code

Description

Control instruction STOP 0x15 Stop simulator.

Transfer instructions MOVE RA, VALUE
MOVE RA, [ADDRESS]
MOVE [ADDRESS], RA

0x00
0x01
0x02

Exchange data between Memory and processor. The
first operand is the destination operand.

Arithmetic instructions ADDI RA, VALUE
ADD RA, [ADDRESS]
SUBI RA,VALUE
SUB RA, [ADDRESS]
INC RA
DEC RA

0x03
0x04
0x05
0x06
0x07
0x08

Arithmetic instructions using immediate or direct
addressing. INC and DEC add and subtract 1 to RA,
respectively

Compare instructions COMPAREI RA, VALUE
COMPARE RA, [ADDRESS]

0x09
0x0A

These instructions do the same that SUBI and SUB.
The difference is that compare instructions do not
write result in RA, but the flags are modified.

Jump instructions JUMP ADDRESS
JLESS ADDRESS
JGREATER ADDRESS
JEQUAL ADDRESS

0x0B
0x0C
0x0D
0x0E

The first one is an unconditional jump. In this case
the jump is always taken.
The other instructions are conditional jumps. To
evaluate the condition, these instructions check the
flags:

Z=1 � Equal
Z=0 & C=0 � Greater
C=1 � Less

Stack instructions PUSH RA
POP RA

0x0F
0x10

The first instruction inserts one byte at the top of the
stack. The second one gets the last byte inserted in
the stack. SP is updated accordingly.

Subroutine instructions CALL ADDRESS
RET

0x11
0x12

The first instructions calls the subroutine located at
the specified address and put the return address in the
stack. RET gets the return address from the stack and
writes it to the PC register.

I/O Instructions IN PORT
OUT PORT

0x13
0x14

These are the Easy8 input and the output instructions.
Data are got from or put into the RA register.

FIGURE 2
EASY8 SIMULATOR APPLET.

International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
5

TABLE 2
JAVA VIRTUAL MACHINE CONFIGURATION TO ALLOW FILE SYSTEM ACCESS.

Java Virtual Machine Configuration steps
Microsoft JVM in Internet Explorer
(Windows 98, ME and 2000)

1. Open Internet Explorer and do Tools->Internet options and select the Security panel
2. Select the icon "Local Intranet" and press the "Sites" button, then press “Advanced Options” and add
the server URL (http://poseidon.disca.upv.es) . The “https” requirement has to be unselected.
3. Press "Custom level" y look for the "Microsoft VM" section, in “Java permissions” select “Custom”
4. Press "Java custom configuration" and in the "Permissions edit" panel choose in the “Unsigned
content” section the box "Execute inside the sandbox" and in the subsection "Access all files" select
"Activate"
5. Finally... press OK in all windows and restart Internet Explorer

Java 2 Plug-in
(this will be the same in every web
client on every operating system
that has a Java 2 plug-in available)

1. Execute the program "policytool" located in the subfolder "bin" of the plug-in installation folder (i.e.
c:\Program files\java\j2re1.4.1_01\bin)
2. In the "Rules file" text field write ".java.policy"
3. Press in "Add rule entry". In the opened window write the server URL in the text field "Code base"
(http://poseidon.disca.upv.es) and then press "Add permission"

In "Permission" select "File permissions"
In "Destiny name" select "ALL FILES"
In "Actions" select "read" and then "write"
Press "OK"

4. Finally... Press "Done" and do File->Save, then close the program

APPLET INSTALLATION

The Easy8 simulator applet is made up of three files:
• The HTML file that embeds the applet This is achieved by means of the HTML standard tag <applet>. The content of the

HTML file is:

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>
Easy8 simulator
</TITLE>
</HEAD>
<BODY>
<APPLET
 CODEBASE = "."
 ARCHIVE = "e8asm.jar"
 CODE = "e8asm.e8asmapp.class"
 NAME = "Easy8CU"
 WIDTH = 800
 HEIGHT = 500
 HSPACE = 0
 VSPACE = 0
 ALIGN = middle
>
<PARAM NAME="lang" VALUE="en">
</APPLET>
</BODY>
</HTML>

The attributes ARCHIVE, CODE, WIDTH and HEIGHT specify the applet library file, the main Java class and the size
of the applet panel, respectively. The parameter “lang” specifies the language (“es” for Spanish, “ca” for Catalan and
“en” for English).

• The applet library file It is the file named “e8asm.jar” it includes all the Java classes required in binary format.
• The exercise solution file It is an XML file (ejercicios.xml) that uses a customised Docbook grammar[7]. It is

automatically generated from the class notes also developed in the same language. Only the <programlisting> tag content
is relevant but the file has to be “well formed” according to XML[8] following the structure in the next listing.

International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
6

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE Theme
 PUBLIC "-//DISCA//DTD TeachdB DocBook XML V4.1.2.5//EN"
"http://www.disca.upv.es/xml/dtd/theme.dtd">
<Theme lang="es">
 <Content>
 <Section>
 <Exercise>
 <Enunciate>
 <para>Realiza un programa que calcule 9 + 5 - 2, dejando el
 resultado en el registro RA</para>
 </Enunciate>
 <Solution>
 <programlisting>
00 MOVE RA, 9
02 ADDI RA, 5
04 SUBI RA, 2
06 STOP
 </programlisting>
 </Solution>
 </Section>
 </Content>
</Theme>

The applet installation on the web server consists on copying these three files in a subfolder on the server document root
folder. To load the applet in the web client you have to append, to the server URL, the HTML relative path to the document
root folder. In our case the server URL is:

http://poseidon.disca.upv.es

The three applet files mentioned are located in the next path relative to the server document root:

fct/e8asm

Then the complete URL to load the applet in the web client is:

http://poseidon.disca.upv.es/fct/e8asm/e8asm.html

The HTML file that includes the applet can also be linked from a default file that gives an explanation about the applet
features and use. In our case this default file is opened by the URL:

http://poseidon.disca.upv.es/fct/e8asm

In order avoid the need of an internet connection to use the applet, it can also be installed in the local file system. This is
done by simply copying the three files (e8asm.html, e8asm.jar and ejercicios.xml), around 60KBytes, in a folder. Then the
applet is started by loading in the web client the “e8asm.html” file. The disadvantage of this alternative is that applet updates
are not automatically performed.

CONCLUSIONS AND FUTURE WORK

The educational simulator presented has been very useful and effective in teaching introductory concepts and techniques
about assembly language programming. Furthermore it has received a very enthusiastic acceptance by the students. On this
grounds we plan to develop applets to cover other aspects of the subject like: binary data representation, cache memory, I/O
interrupts and DMA, basic operating system services, etc.

We plan also to complement the applets with server side applications using Java servlets. This will allow to create in the
server a folder for every student in which they will be able to save their work, in this way not only the simulator but the data
that they generate will be available from the server. It will also allow us to follow the students use of the tools and their
realisations.

International Conference on Engineering Education July 21–25, 2003, Valencia, Spain.
7

ACKNOWLEDGEMENT

The work presented has been supported by the EUROPA program of the Universidad Politécnica de Valencia.

REFERENCES

[1] Sun Microsystems Java web site, "http://java.sun.com"

[2] JBuilder Borland web site, "http://www.borland.com/products/downloads/download_jbuilder.html"

[3] Zukowski, J., Java AWT Reference, O’Reilly, 1997

[4] Niemeyer, P., Knuds, J., Learning Java (2nd edition), O’Reilly, 2002

[5] Easy8 applet web site, "http://poseidon.disca.upv.es/fct/e8asm"

[6] Hergert, D., Thibeault, N., PC architecture from assembly language to C, Prentice Hall, 1997

[7] Docbook web site, “http://www.docbook.org”

[8] eXtened Markup Language spec 1.0, “http://www.w3.org/TR/REC-xml”

