
A STUDY ON THE CREATIVE PROBLEM-SOLVING PROCESS IN
COMPUTER PROGRAMMING

Ming-Chou Liu and Hsi-Feng Lu

Abstract -- In this paper we firstly determined how creative
problem solving (CPS) is incubated and developed in
programming. We adopted methods that included thinking
aloud, observation and interviews to compare and analyze
the data collected from experts and novices while they were
engaged in programming task s to complete a sorting
process using Visual BASIC. The purpose of this study was
threefold: 1) to find the CPS ideas generated by expert and
novice learners, 2) to find how CPS ideas related to the
CPS process, and 3) to find the factors that affected the
CPS process. This study found that Figural Form A of the
Torrance Test of Creative Thinking (TTCT) score could
predict the number of problem solving ideas and
programming achievement both in strategy and the degree
of program completion. Ideas might fail due to errors in
thinking or syntax expression. This study also generalized
different error types to help improve programming
instruction.

Index Terms – creative problem solving, programming,
thinking aloud

BACKGROUND OF THIS STUDY

Being the foundation of our economic strength, it is
significant to give an impetus to research and development
in the Information Industry. Keeping software industry
performance abreast with the hardware industry is an
important goal.

Programming instruction and training are fundamental
skills for the development of a software industry. It is an
activity involving brainstorming that contains the CPS
process, which is somewhat implicit, making it difficult to
observe or measure [1]. To formalize and visualize this
process and its source better, we can rebuild the relative
experience and conditions in programming instruction and
training to accelerate the programmer’s CPS ability, which
in turn will contribute to the performance and output of the
software industry, laying a good foundation for our country
in the 21st century.

We made a comparison between experts and novices
to enhance the learning effect. During the comparison, we
discussed the content, style and development of a
professional. With this effective instructional method, we
helped novices to access professional cultivation with this
effective instructional method [2]. This instruction assisted
novices with attaining a swift breakthrough in thinking or
operation. By analyzing and comparing the differences

between the programming experts and the programming
novices, determining the specific creative skills of the
experts and then handing them down to the novices, a good
foundation for software development education and training
for industry was laid [3].

Base on the above ideas, we must first determine how
CPS is incubated in programming. These research results
can be used in future research discussions to obtain
essential and important contributions. The follow-up
research includes: 1) how to mold relative conditions to
apply the ability on problem-solving successfully; 2) how to
design the relative instructional training and teaching
materials for the cultivation and training of the creative
problem-solving ability. This important procedure allows
the creative problem-solving ability to come down in one
continuous line from incubation, development to
application.

Under the planning background mentioned above, this
research is aimed at incubating and developing CPS in
programming. We adopted methods that included thinking
aloud, combining observation and interviews to compare
and analyze the data collected from experts and novices.
The focuses of this research included:
l Determining the relationship between the quantity of

problem-solving ideas and the creativity in the creative
problem-solvers (experts and novices)

l Investigate the affective process for the above problem-
solving ideas and their influences on successful
programming development.

l Investigate the error pattern, proportion and causes of
CPS in programming, and then propose an
improvement strategy in the instruction.

METHODS AND PROCEDURE

The procedure for this research included seven items as
follows:
l Draft the conditions and characteristics of the

research objects.
l Choose the research objects (experts and novices).
l Implement the Torrance Test of Creative Thinking.
l Design the questions and interview guidelines.
l Implement the problem-solving programming and

collect data.
l Analyze the data.
l Sum up the conclusions and suggestions and write the

research report.

We implemented the experiment on thirteen
sophomores from the Math Education Department of
NHLTC who have just learnt Visual Basic for the first time.

This research aimed at investigating the role of
creativity in problem-solving procedure. In this
experiment, we adopt Torrance Test of Creative Thinking
(Figural Form A) as the measuring standard for creativity.
This Torrance Test of Creative Thinking (in short as TTCT)
organized by the America scholar E.P. Torrance includes
three parts: (1) picture construction (2) incomplete figures
(3) repeated figures. Each of the three parts in this test
lasted for ten minutes, amounting to 30 minutes in total,
plus the instruction and description that totaled 45 minutes.

The creativity involved with the procedure for
programming thinking might possess both graphic and
literal types. However, the reasons for choosing graphic
type, rather than the verbal type in this research was: The
completion of problem-solving contained two necessary

actions: conceptive problem-solving strategy and the coding
and programming of the conceptive problem-solving
strategy, and then putting into practice for the verification
of its practicability. The former involved with arranging
the methods with more graphic thinking than literal
thinking is the incubation and development of the CPS that
this research concerns.

The three activities of TTCT led to the indexes of the
four creativities: the flexibility, fluency, originality and
elaboration. To compare the strength of the four abilities,
we switched the original scores into standard scores (T
score) with the formula as follows:

T=50+10x(X-X)/SD

After calculation, the T scores for each activity stated as
Table I

TABLE I
THE T SCORE S FOR EACH ACTIVITY

Activity 1 Activity 2 Activity 3
Problem-

Solver
Originality Elaboration Fluency Originality Flexibility Elaboration Originality Elaboration

M 51.5 53.3 57.9 45.1 44.7 45.9 41.7 48.9
H 57.7 55.1 57.9 50.7 50.7 68.1 43.4 59.5
E 57.7 49.7 33.7 39.6 53.2 54.8 66.5 54.2
N 51.5 53.3 57.9 47.0 59.2 45.9 49.4 57.4
I 51.5 44.3 57.9 73.0 48.3 50.3 72.0 57.4
J 57.7 73.1 33.7 54.4 50.7 50.3 52.2 47.9
K 51.5 51.5 39.8 37.7 50.7 41.5 36.2 38.4
O 20.0 35.3 57.9 48.9 48.3 50.3 45.6 42.6
G 45.2 38.9 57.9 45.1 41.1 41.5 42.8 36.3
D 57.7 46.1 39.8 45.1 50.7 45.9 48.3 36.3
L 51.5 60.5 57.9 65.6 67.6 72.5 56.6 67.9
C 45.2 49.7 45.8 43.3 50.7 41.5 48.9 44.7
F 51.5 38.9 51.9 54.4 54.4 41.5 46.1 58.4

With further calculation using this formula, the T
scores for each activity (Activity 1, Activity 2 and Activity
3) stated as Table II:

TABLE II
TOTAL T SCORE S FOR EACH ACTIVITY

Problem-solver Activity 1 Activity 2 Activity3
M 53.1 46.1 43.9
H 55.4 54.7 48.2
E 50.5 44.0 62.8
N 53.1 49.1 51.8
I 45.0 64.2 67.6
J 71.5 51.7 50.9
K 51.5 40.3 36.9
O 33.8 49.7 44.7
G 39.6 44.7 40.9
D 47.3 45.7 44.7
L 59.6 66.7 60.0
C 49.3 44.1 47.7
F 40.2 51.7 49.8

The T scores for each ability (originality, elaboration,

fluency, flexibility) are shown in Table III:

TABLE III
T SCORE REFERENCE FOR EACH ABILITY

Problem
solver

Originality Elaboration Fluency Flexibility

M 46.1 51.1 57.9 45.9
H 50.6 57.3 57.9 68.1
E 54.6 52.0 33.7 54.8
N 49.3 55.3 57.9 45.9
I 65.5 50.8 57.9 50.3
J 54.8 60.5 33.7 50.3
K 41.8 45.0 39.8 41.5
O 38.1 39.0 57.9 50.3
G 44.4 37.6 57.9 41.5
D 50.4 41.2 39.8 45.9
L 57.9 64.2 57.9 72.5
C 45.8 47.2 45.8 41.5
F 50.7 48.7 51.9 41.5

Osborn and Parnes proposed a CPS model that can be
referred to the CPS process for computer programming.
This model stated five stages of CPS process including fact

finding, problem finding, idea finding, solution finding, and
acceptance finding [4]. Every stage repeated a cycle from
emphasizing divergent thinking at the beginning to
emphasizing convergent thinking at the end. In this study,
we provided a pre-defined question so that the learners
could start the CPS process from the 3rd stage, idea finding,
within the limited time. Divergent thinking emphasizes
originality, fluency, and flexibility. Convergent thinking
emphasizes originality and elaboration in creative thinking.
The idea finding stage emphasizes divergent thinking
including originality, fluency, and flexibility. The solution
finding stage emphasizes elaboration. The acceptance
finding stage requires planning and implementation. This
means designing, testing, debugging and interface usage in
programming. In Table II and Table III we can see potential
problem solvers such as L, I, and J have higher scores and
ability.

For actual problem-solving we adopted thinking aloud,
in which the students solved the problems with Visual Basic
while expressing their ideas and methods out loud. We
recorded the whole process with a video recorder for
analysis. The time allotted for problem-solving was 30
minutes and the theme for the research was: list the 100
values from 0-100 generated randomly from small to large
and display the results. Thinking aloud method has been
proven to be an effective way to explicate implicit thinking
[5]. After the problem-solving, we implemented a focus
interview and then re-confirmed the obtained development
data to determine the background of the problem-solvers.

For problem-solving, the sorting problem we chose
was very challenging for beginners. This problem contained
the following basic programming skills: (1) object-oriented
programming; (2) application of variables and arrays; (3)
output and input; (4) If statement; (5) the adequacy of the
loop (Nested loop were commonly used).

RESULTS AND DISCUSSION

With each problem-solver’s originality score in Activity 3
gained by the TTCT, we juxtaposed the quantity each
problem-solvers’ ideas with the problem-solvers’ “Idea
Quantity Index” from their realistic problem-solving
performance for the convenience of comparison. “Idea
Quantity Index” on the left side indicated whether all of the
ideas occurred during problem-solving could be applied in
the calculation. The originality scores for activity 3 on the
right side stated as Table IV shows:

TABLE IV
IDEA NUMBER INDEX DURING PROBLEM-SOLVING AND PREDICTION TABLE

Problem-solver
Idea Quantity

Index Problem-solver Creativity

E 3 I 72.0
I 3 E 66.5

D 2 L 56.6
L 2 J 52.2
C 1 N 49.4
F 1 C 48.9
G 1 D 48.3
H 1 F 46.1
J 1 O 45.6
K 1 H 43.4
M 1 G 42.8
N 1 M 41.7
O 1 K 36.2

After the detailed comparison we found significant
differences appeared in the first four people: Problem-
solver E, Problem-solver I, Problem-solver D and Problem-
solver L produced more than two ideas. In comparison, the
originality scores of the four people in the TTCT are quite
identical. Although only problem-solver D got a lower
originality score, the score was still at the middle upper
level, within the acceptable range. As a result, the “quantity
of ideas” of the programming problem-solving predicted by
TTCT is very precise. As for the problem-solver C and the
problem-solver F who used only one idea, we found no
relation between the problem-solving and the creativity in
them.

Torrance’s research indicated that activity 2 had low
fluency and activity 3 had high elaboration and that people
with a higher originality had a tendency for successful
problem-solving. Since the originality was the average of
the three T scores, we predicted the “problem-solving
completion” with the three T scores above and got the
results as Table V shows:

TABLE V
THE THREE T SCORES AND THE PREDICTION OF THE COMPLETION

Problem
solver

Fluency
(Activity 2)

Elaboration
(Activity 3)

Originality Prediction of
Completion

M 57.9 48.9 47.7 42.61
H 57.9 59.5 52.8 47.79
E 33.7 54.2 52.5 48.97
N 57.9 57.4 51.4 46.53
I 57.9 57.4 59.0 51.09
J 33.7 47.9 58.1 51.07
K 39.8 38.4 42.9 39.44
O 57.9 42.6 42.7 38.35
G 57.9 36.3 41.7 36.49
D 39.8 36.3 45.9 40.82
L 57.9 67.9 62.1 55.05
C 45.8 44.7 47.0 42.56
F 51.9 58.4 47.2 44.81

The calculating formula showed as:

((100-A1)+2*A2+6*A3)/10

We juxtaposed the rank for each problem-solver
predicted by the TTCT with their performance during actual
problem-solving. Data is displayed in Table VI. On the left

side is the rank for “Program Completion Index” with the
“Prediction of the Problem-solving Completion” on the
right side. The “Program Completion Index” scoring
method is: 10 points for successful problem-solving,
including (1) the problem-solving strategy: at least one
practicable strategy (3 points); (2) components required:
forms, buttons (program execution control components, 1
point) and menu box (data display components, 1 point).
Components with the same functions will do. Composing
the processing procedure of the events (1 point). (Totally 3
points); (3) Sorting programming: variable access, such as
the assignment of the variables or array variables (=), and
comparison (1 point), statement (If or Select) (1 point), loop
(For, While, Do loop) (1 point), and the combination into a
program able to carry out the sorting function (1 point)
(Totally 4 points).

TABLE VI
COMPARISON BETWEEN THE “PROGRAM COMPLETION INDEX” AND THE
COMPLETION PREDICTION IN P ROBLEM-SOLVING DEVELOPMENT

Problem
solver

Program Completion
Index

Prediction
of

Completion

Problem
solver

C 10 55.05 L
F 10 51.09 I
H 9 51.07 J
I 9 48.97 E
D 8 47.79 H
L 8 46.53 N
E 7 44.81 F
M 7 42.61 M
N 7 42.56 C
G 4 40.82 D
K 4 39.44 K
O 4 38.35 O
J 3 36.49 G

During the first comparison, we found some non-
conformity between the problem-solving completion of
each problem-solver predicted by the TTCT and their
performance in realistic problem-solving. Problem-solver
C and Problem-solver F were particularly different. Their
ranks in the prediction of TTCT were at the medium level;
however, they completed the problem-solving. For further
understanding to the background of the two problem
solvers, we found that problem-solver C who had always
been interested in programming had already endeavored to
this field since very young and had abundant experience in
programming. Therefore, Problem-solver C had no
difficulty in problem-solving. Problem-solver F who also
had a craving for programming had taken C programming
courses and learned the sorting. We classified these two
people as experts with the other problem-solvers as novices.
Interesting enough, after classifying Problem-solver C and
Problem-solver F as experts and eliminating them from the

problem-solvers, the conformity among each problem
solver’s “problem-solving completion” predicted by TTCT
and their performance in realistic problem-solving was
drawn closer.

After taking out the two experts, we found that, of the
remaining nine novices, only Problem-solver D and
Problem-solver J appeared unmatched. Problem-solver D
with a lower predicted rank showed good performance, yet
Problem-solver J with a higher predicted rank showed bad
performance. The performance of the three problem-solvers
in the middle of the second section completely conformed
to the prediction, while the performance of the last four
problem-solvers in the third section acted similarly as the
first section. In conclusion, after taking out the experts,
TTCT still provided a certain degree of accuracy that makes
it referable.

The statistics of quantification responded to the above
analysis. The correlation coefficients of the programming
completion index and the completion prediction of the 13
problem-solvers in Table 6 were (r = 0.33,p = 0.27). Under
the condition without Problem-solver C and Problem-solver
F, the correlation coefficients raised as (r = 0.47, p = 0.14.
Under the condition without Problem-solver D and
Problem-solver J, the correlation gets even higher (r =
0.87,p = 0.002).

Since the knowledge involved in programming is quite
complicated, it takes each of the following indispensable
abilities to complete problem-solving: (1) practicable ideas;
(2) application of the V.B. integrated environment; (3) the
ability in V.B. programming and (4) testing and debugging
ability.

Therefore, taking it from another angle, although both
of Problem-solver C and Problem-solver F were experts
who performed commonly in TTCT, they still solved the
problems successfully. This was because the keys to
problem-solving consisted of one practicable method and
abundant professional knowledge. The two examples from
Problem-solver C and Problem-solver F indicated that the
problem-solving ability of programming was drillable;
however, due to the huge and complicated professional
knowledge, it took more practices and longer time to
master.

During the further case analysis , we made an analysis
on the representative problem-solvers: Problem-solver E,
Problem-solver I and Problem-solver L who got high grades
in originality with an outstanding performance within the
first four ranks in the aspects of ideas and the completion
during realistic problem-solving. We tried to understand the
development of their ideas during the problem-solving and
their effects.

Obviously, idea finding plays an important role in the
CPS process. Without ideas no successful problem solving
can be accomplished. Solution finding involves evaluating
ideas to find the most appropriate idea as the basis of
successful problem solving. Acceptance finding is to plan

and implement the most appropriate idea to check if it is
valid. The process might go back to the previous stages if
the result of this stage shows invalid.

At the idea finding stage, the problem solver must
apply his/her divergent thinking to generate various ideas.
More ideas would be better. The learners E, I, and L all
generated more than two ideas within a short time and their
ideas were proven valid afterwards. This means that these
three problem solvers have good potential.

The analysis of the three problem-solvers indicated a
more direct problem-solving method for beginners but lack
of overall and detailed consideration. When they
encountered results that conflicted with their expectation,
they became at a loss, doubting the practicability of the
original strategy, failing to analyze the result and finally
gave up original practicable ideas. Secondly, the processing
array data skill was also a key factor. Without full
understanding of processing array data and realistic
operating experience, beginners could not pass the test the

first time that they processed such problems. In the end,
after spending most of their time in the syntax and
operation, they would run out of time.

The problem-solving result in experiment was: two of
the 13 problem-solvers succeeded in solving the problem
while 11 problem-solvers failed, resulting in a problem-
solving success proportion of 15.4%. The two problem-
solvers that completed the problem successfully spent little
time thinking about the programming process because they
were experts. They were also quite familiar with the scripts
and made few mistakes. Even when they did make
mistakes, they found them and corrected them right away.
In the long run, the two problem-solvers spent little time
(less then 10 minutes) completing the problem-solving.
They had confidence in sorting. The only problem
remained was the selection of the applicative components.

Through the classification statistics, the mistakes or
difficulties the problem-solvers encountered during
problem-solving are stated as Table VII shows:

TABLE VII
MISTAKES CLASSIFICATION DURING PROBLEM-SOLVING

Classification Description Quantity Total Percentage

Assignment
1.Incorrect usage of the variable assignment
2.Failed to swap the two variables correctly

3
3 6 15%

Data type
3.Type mismatched during data calculation
4.Overflow

3
1 4 10%

Array
5.Access to array
6.Index out of range

5
4 9 22.5%

Variables effective
scope

7.Incorrect variable scope 1
1 2.5%

Syntax
8.Incorrect spelling of the variables or script 5

5 12.5%

If judgment
9.Incorrect script structure
10.Incorrect comparison and logic calculation

2
3 5 12.5%

Loop

11.Incorrect script structure of For loop
12.Incorrect script structure of While loop
13.Cooperative usage of For loop and array
14.The control variable in For loop
15.Usage of the two-layer loop

3
1
1
2
2

9 22.5%

Component
16.Incorrect attribute configuration of the components 1

1 2.5%

The assignment value, data type, array and variable
scope all fell within the variables with an error rate up to
50%. Understanding and using the concept of variables is
the most difficult part for beginners. However, the
application of variables is the pith in programming, which
is a basic ability learners must be equipped with. We
suggest that more efforts be invested in the variable section
during programming instruction, ensuring that learners
completely understand this concept and be able to use the
concept with skill. The emphasis lies in: (1) clearly
distinguishing the differences between programming

variables and mathematical variables; (2) statements, such
as the syntax of the comparison in an If statement; (3)
different applications, applied time and applied skills for
different kinds of variables and (4) skill with complicated
data structures, such as the array. Students taking the test
tended to accept the object concept and put it into
application with the components . A quite low error rate was
found, which indicated the advantages of the object-
oriented programming.

The application of arrays and loop operations are both
advanced skills in programming and contribute greatly to

the solving of difficult problems. The experimental results
showed that students had difficulty with these two areas
with an error rate of 45% (a total rate of the two ability).
Students usually failed to clarify the relationship and
produce correct programs even after cudgeling their brains.

Secondly, we found that students had a direct
association and application for single loops. However, the
correct answers of the single loops did not come out until
the application of the nested loops. In the end, the students,
equipped with correct initiative concept (such as compare
two by two or find out the smallest value), usually managed
to use one loop for the programming initially, but failed in
completing the sorting. Students gave up this method and
thought of other methods or gave up solving this problem
because of its complexity. In other words, most students
restricted themselves to solving the problem with single
loops and never thought of solving it with nested loops.
Furthermore, most students did not carefully analyze the
result gained from the first loop, which was a great pity as
this result connoted significant meaning. By repeating the
action for the first loop, the second smallest value occurred,
which derived the second loop and the answer. The few
students that thought of the solution with nested loops failed
to clarify the relationship between the nested loops and the
controlled variables or between the controlled variables and
the array access. They therefore still failed to solve the
problem successfully. During instruction more practical
examples should be presented for the learners to have more
opportunity to practice and experience the variations.

Conclusions and Suggestions

This research produced the following conclusions:
l The creativity index gained from TTCT matched the

tested student’s problem-solving performance in the
programming development, regardless of the problem-
solving strategy or the problem-solving completion.

l Although the quantity of the programming novice ideas
predicted by the TTCT was quite precise, the novices
were not familiar with the calculations and syntax of
the ideas and still failed to solve the problems.

l Experts that already knew about the problem-solving
strategy and skills produced fewer ideas, sometimes
even just one idea.

l The programming job requires lots of creativity.
However, due to the requirement for more professional
knowledge, creativity alone was not enough. The
syntax of the program language, understanding the
semantics, familiarity with each basic skill of
programming and the testing and debugging skills were
all requisites and must be emphasized in programming
instruction.

l In the syntax and meaning of the program language,
understanding and application of the variables was the
basic and core ability. During instruction, it is

necessary to distinguish the variables from the
mathematical variables carefully. Array and loop
variables were another problem area, a critical and
powerful tool in solving complicated problems.
Nevertheless, the numerous variations in application
required more detailed description and practices.

ACKNOWLEDGMENT

This study was supported by Taiwan National Science
Council under contract number NSC89-2519-S-026-001

REFERENCES

[1] Kirner, K., Implicit and explicit mental processes, 1998, Mahwah, NJ:
Lawrence Erlbaum.

[2] Johanson, R. P., “Computer, cognition and curriculum: Retrospect and
prospect ”, Journal of Educational Computing Research, Vol 4, No 1,
1988, 1-29.

[3] Mayer, R. E., “Introduction to research on teaching and learning
computer programming”, In R. E. Mayer(ed.). Teaching and Learning
Computer Programming: Multiple Research Perspective . 1988, 1-12.
Hillsdale, NJ: Lawrence Erlbaum.

[4] Mayer, R. E., Thinking, Problem Solving, Cognition. (2nd ed.). 1991,
NY: Freeman.

[5] van Someren, M. W., Barnard, Y. F., and Sandberg, J. A. C., The
Thinking Aloud Method: A Practical Guide to Modeling Cognitive
Process. 1994, NY: Academic Press.

