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Abstract

Introductory courses in differential equations (DEs) are typically taught abstractly and deductively.  This study examines student performance when mathematics is taught contextually, with particular reference to physical situations that are common to engineering.  Results suggest that engineering students benefited from the contextual curriculum.
1.
Introduction

Many introductory courses on differential equations (DEs) for engineering and physical science majors ignore the equations’ natural contexts and treat them abstractly. Usually, a deductive approach is used: the solution to a general DE is derived and then application problems are solved through manipulating the solution formula. These practices are in place throughout the mathematics curriculum. Thus engineering applications are taught after, and disjointly from, mathematics. The result is that engineering students do not develop a flexible and mature understanding of the role of mathematics in engineering problem solving [1]. Student difficulties and persistence in mathematics service courses like those for DEs have motivated the design of new curricular materials that require students to incorporate knowledge from other domains in order to use mathematics to solve problems [2]. While efforts to revitalize the teaching and learning of DEs to undergraduate students are not new [for example, see 3, 4], these excellent ideas are not always scrutinized by educational research.
2.
Background
Faculty whose students need to use mathematics in learning their disciplines recommend that mathematics courses be made more relevant to their students [5]. Engineering faculty in particular have indicated that an engineering perspective may improve both students’ motivation for learning mathematics and students’ ability to transfer their mathematics learning to engineering contexts [6, 7, 8]. In mathematics education, researchers have suggested that instructional design capitalize on students’ intuitions by using realistic settings for DE problems [9, 10].

Work in mathematics education on DEs is minimal. Research has revealed that students struggle even understanding what a differential equation is and what it is for [11, 12, 13]. Some research has focused on the mode of instruction, such as inquiry-oriented classrooms constructed from a socio-cultural perspective [14], while associated projects have extended existing work on students beliefs about mathematics in relation to classroom norms [15] and characterized cognitive obstacles that students encounter when reasoning about rates, time, and change [16]. The research reported here is distinct in that the students were enrolled in common lecture-style mathematics courses without any special technological components. 

When considering mathematical knowledge, we must account for the existence of both procedural and conceptual knowledge. Conceptual knowledge is a knowledge that is rich in relationships [17] whereas procedural knowledge is comprised of two components: knowledge of the formal symbolic language and knowledge of algorithms. Both kinds of knowledge are necessary for solving application problems, which often have modeling components. The study of DEs is largely a study of applications, but the conceptual ideas that tie the subject into a coherent whole are often omitted [18]. However, proficiency in a traditional DE course may be equivalent to proficiency in calculus [19]. Students can and do learn to manipulate algorithms competently without necessarily understanding what the algorithms or the manipulations mean [20]. Encouraging skill-acquisition of this kind can produce students who are efficient at taking tests but are unable to apply their learning in different contexts.

The transfer of knowledge to settings other than the mathematics classroom is important for the success of engineering students. [21] characterizes the difficulties students have in achieving transfer as rising from the strength of the boundaries between contexts: classroom mathematics, to the student, is disjoint from engineering problem solving. Learning theorists have accounted for this apparent discrepancy by introducing the situated perspective of learning. In this view, what is learned is dependent on the context in which it is learned [22] and so learning is maximized with both authentic examples and abstract instruction.  The applications-oriented curriculum, described below, was designed with these theoretical perspectives in mind.
The main variable of interest in this study is the curriculum used by each lecture group. The two texts are described in more detail in [23] where they are analyzed with respect to the level of cognitive demand they place on the learner, but I will describe them briefly here. The first curriculum used, by Boyce & DiPrima [24], is a traditional commercial text on DEs that has been widely used since its first printing in 1965. The content is organized by equation type. It progresses from linear first order homogeneous DEs to linear and nonlinear first order nonhomogeneous DEs, to second order linear DEs, to partial differential equations (PDEs), to applications, and then to systems of first order linear DEs. The authors use an exposition-example-exercise format. In the exposition, an equation type is presented (eg, y′ + f(t)y = g(t)) and its solution is demonstrated. In the example phase, specific instances of the equation are solved using the method set forth in the exposition (eg, specific functions are substituted for f(t) and g(t)). The exercises given at the end of each section are like the examples. They range from concrete apply-the-technique tasks to highly structured multi-stage tasks where the student is stepped through a complicated theoretical problem.

The other curriculum in use, written by Baker [25], was developed to address the concerns raised by engineering faculty at our university and in the research literature [8, 7]. Its defining characteristic is that it explores examples rooted in engineering contexts first and then moves to mathematical abstractions of the material. In short, it uses an example-exposition-exercise format. Mathematical principles (as opposed to theorems) are introduced as generalizations from the physical problems. For example, in Baker’s text [25], the second-order linear constant coefficient DE is extracted from an extended example about a sustained chemical reaction. There are fewer exercises in the applications-oriented curriculum and they are not as technically complex as those in Boyce & DiPrima’s text [24]. However, the exercises are, overall, more cognitively demanding [23].
The purpose of this study was to compare the performance of engineering students in a course on DEs who were taught using an applications-oriented curriculum [25] with engineering students enrolled who were taught with a traditional curriculum [24]. The traditional curriculum focuses on teaching analytic techniques for solving a wide variety of DEs. The applications-oriented curriculum was designed to address the growing concerns of engineering faculty that engineering students are not able to apply the mathematics they learn in their DE classes to problem solving in their engineering classes or on engineering projects.  The following research question guided data collection and analysis: What differences, if any, exist in student performance with respect to the use of an applications-oriented curriculum and an analytic-techniques oriented curriculum?
3.
Methods
Since students could not be randomly assigned to the two lecture groups, a non-equivalent groups quasi-experimental research design was used. Students were not randomly selected since it is not for the researcher to choose their coursework. The independent variable of interest was the curriculum: traditional or applications-oriented. The dependent variable, student performance, was measured by the total score on three questions common to both groups’ final exams. The construction of the test items is described in more detail below. The students’ prior mathematics achievement was used as a covariate.

In order to create exam items that reflected the course content for both groups, I attended the class sessions during the academic term. To establish content validity of the questions, and to ensure that the questions were appropriate to the course, the items were drafted and revised iteratively with input from both lecturers and from the course coordinator. The initial creation of the items and subsequent revisions were informed by the literature on conceptual and procedural knowledge. The values of the parameters differed for each class since their final exams were given on different days. Dr. Abel used the notation y′ for derivative while Dr. Bessel used the notation dy/dt and so the symbols written in the exam questions reflect this difference as well. Students in both groups were allowed to use graphing calculators.

Throughout the creation of the instrument, we balanced procedural and conceptual elements to ensure that we were not testing the students only for memorized procedures. A brief summary of each item is provided below:

Problem 1: A first-order linear, constant coefficient, nonhomogeneous equation set in a context where a vat of liquid has been contaminated. Part (a) asked the students to find the amount of contaminant present in the tank for any time t given that the tank is initially full of clean water. In part (b), the students were asked to find the amount of contaminant for times after the flow of contaminant is halted.

Problem 2: A second-order linear, constant coefficient, nonhomogeneous equation. Given the DE, part (a) asked students to find the general solution. In part (b), students were asked to find a value for the initial conditions so that the amplitude of the steady state solution was 5 when the derivative at t = 0 was 1.

Problem 3: Separation of variables in a PDE. Students were asked to use the method of separation of variables to replace m(t)ut − n(x)uxx = 0 with a pair of ordinary DEs.

All of the problems were novel to the students, but similar to examples covered in class or in homework assignments. In particular, Problem 3 was designed so that the students could not recount memorized step-by-step solutions. 

The students’ prior mathematical achievement was measured by their mathematics grade point averages (GPAs). The Math GPAs were extracted from the students’ academic transcripts. As “mathematics” I counted any course offered in the mathematics or statistics departments. For each student I calculated a weighted average of the grade earned in each class according to the credit hours it was worth. The group averages and standard deviations for this measure are shown in Table 1 below.
The study was conducted at a large mid-western university in the United States. Fifty-one students from two lecture groups and the lecturers participated. I will refer to the group that used the Boyce & DiPrima curriculum as Group A and to their lecturer as Dr. Abel. I will refer to the group that used the Baker curriculum as Group B and to their lecturer as Dr. Bessel. During the academic term that the research was conducted, two lecturers were using the applications-oriented curriculum: one was the author of the curriculum and the other held a post-doctoral position. In order to minimize the implementation effects that could arise from studying the author of the curriculum, I selected the group that was led by the post-doctoral lecturer. Dr. Bessel had taught the course and had used the applications-oriented curriculum before. Dr. Abel was also a post-doctoral lecturer had also taught the course several times before and had used the traditional curriculum each time. He and his students were selected because his class was offered at a similar time to Dr. Bessel’s. Thus, the two classes appealed to the same sorts of students and there were similar time-of-day effects on both groups. The students did not know prior to the start of the course what curriculum they would use. Each class met five days each week: three 48-minute lectures and two 48-minute recitation sessions. The recitations were led by graduate teaching assistants and were geared toward working homework problems or problems similar to the homework.  Formal consent to participate was obtained from both all participants. Twenty-one students volunteered from Dr. Bessel’s class and thirty students volunteered from Dr. Abel’s class. The students’ academic profile is summarized in Table 1 and described more fully below.
Table 1: Academic profile of participants, means and standard deviations

	
	Terms Enrolled
	Hours Earned
	Hours Carried
	GPA
	Math GPA

	Traditional (A)
	4.17 (1.84) 
	90.87 (21.34)
	14.87 (2.22)
	3.33 (.35)
	3.18 (.48)

	Contextual (B)
	5.38 (3.41)
	96.67 (39.54)
	14.48 (3.28)
	3.23 (.54)
	3.09 (.77)

	
	Sci GPA
	Eng GPA
	Math Hours
	Sci Hours
	Eng Hours

	Traditional (A)
	3.17 (.47)
	3.40 (.42)
	15.67 (5.83)
	17.33 (7.29) 
	17 (12.8)

	Contextual (B)
	3.01 (.66)
	3.56 (.51)
	19.38 (8.6)
	21.90 (17.05)
	11.95 (5.52)
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The data in Table 1 was collected from the students’ transcripts. The students carried between 14 and 15 quarter hours (equivalent to 9-10 semester hours), meaning that they were enrolled in two or three other classes besides DEs. The overall mean grade point average (GPA) for the students was 3.29 (SD  = .44) and the overall mean mathematics GPA was 3.14 (SD = .61), which are B+ averages.  All of the students had completed multivariable calculus and none had taken a college course on linear algebra. Group B had taken, on average, more math credits at the university. However, since the groups’ preparations were equivalent, in terms of coursework, this fact indicates that the students in Group A had greater preparation and so a greater advantage coming out of high school. On average, the students had completed enough credits to be ranked as sophomores, but most were at the end of their first year of university study. I note for the reader that the large variation in the total number of earned credit hours in Group B is due to one student who had earned 233 hour (100 credit hours in the sciences) over a period of 16 academic terms (between 4 and 6 years of university study). Group B students had completed fewer engineering credit hours (11.95 hours) than did Group A students (17 hours), indicating that the Group B students might have less experience working with engineering contexts. Table 1 indicates that the students in Group A had, on average, higher mathematics and science GPAs than those in Group B but had a lower engineering GPA than the students in Group B. All of the students were engineering majors; the details are recorded in the graph in Figure 1. 
4.
Results and Discussion
Grading of these problems for research was done independently from its grading for the final exam since I did not want my purposes to interfere with the students’ grades. The students’ responses on the constructed instrument were first checked for the kinds of solutions they attempted. As expected, almost all of the students in Dr. Bessel’s class almost always used the guess-and-substitute method taught in [25] while the students in Dr. Abel’s class used the techniques outlined in [24]. Rubrics were created that reflected the different solution attempts and the rubrics accounted for the difficulty of the solution process. The solution to each problem was broken into stages and each stage was subdivided into steps. For example, in solving Problem 1, a student might use the method of integrating factor and one step of this stage would require evaluating an integral. However, processes like integration, differentiation, or taking limits were not broken mathematics GPA was 3.14 (SD = .61), which are B+ averages. All down further since this knowledge, although important, is prerequisite to the course. 

Each step of a student’s response was assigned a value of 0 for incorrect or 1 for correct. Responses were graded “correct for the work shown” so that step n + 1 was graded based on what was written in step n. I made this decision to prevent minor mistakes (like sign errors) from compounding throughout the problem. The value of each item was scaled to 14 points to give equal weight to each problem in the total score.


After looking through the exams, Problem 1 was missing from the exam of a student from Group A and so his exam is excluded from the numerical analyses presented here. For this reason, there are 29 students from Group A and 21 students from Group B. Students in Group A scored a mean of 27.55 (SD = 1.76) out of the 42 points awarded to the three tasks (Range: 3.08, 42). The mean score in Group B was 31.89 (SD = 1.90, Range: 6.38, 42). Figure 2 graphically shows the distributions of scores for the two groups. The median score for Group A, using the contextual curriculum is higher and the scores exhibit less variation. Both groups have students with maximum scores; however, the low scores of the students using the contextual curriculum are higher than those of the students using the traditional curriculum. A fixed-effects analysis of covariance model (ANCOVA) was selected with curriculum as the categorical independent variable and prior mathematics achievement as the covariate. All statistical tests were performed at the a priori α = .05 level. The data satisfied all statistical assumptions [26] for the model and an homogeneity of slopes test revealed no significant interaction between curriculum and prior mathematics achievement (F = 1.228, df = 1, 46, p = .274). Thus, the ANCOVA model selected is appropriate for the research design. The ANCOVA summary table is given in Table 2.
Table 2: ANCOVA Summary Table
	Source
	Type I SS
	df
	MS
	F
	Sig.
	Partial 2
	Obs. Power

	Math Achievement
	1382.091
	1
	1382.091
	25.445
	0.000
	0.351
	0.999

	Curriculum
	324.366
	1
	324.366
	5.972
	0.018
	0.113
	0.668

	Error
	2552.881
	47
	54.317
	
	
	
	

	Corrected Total
	4259.339
	49
	
	
	
	
	


The main effect for mathematics achievement is statistically significant (FGPA = 25.445, df = 1, 47, p < 0.001) while the adjusted main effect for curriculum is significant (FLecture = 5,972, df = 1, 47, p = 0.018) as well. Analysis indicates a moderate effect size (partial η2 = 0.113) while showing only moderate power (observed power = 0.668). The adjusted mean scores for each group were 27.104 (SE = 1.370) for students using the traditional curriculum and 32.30 (SE = 1.61) for students using the contextual curriculum.

These analyses indicate that when compensating for the students’ mathematical abilities (as measured by their Math GPA), a statistically significant relationship exists between the curriculum type and student performance. Thus, when taking prior mathematics achievement into account, engineering students who use a contextual and applications-oriented curriculum performed significantly better on measures of differential equations knowledge than did students in a traditional analytic-techniques oriented curriculum.

The research question for this study was focused on the existence of differences in students’ differential equations knowledge relevant to whether they used an applications-oriented curriculum or a traditional curriculum. Students using the applications-oriented curriculum performed better on the measure of DE knowledge than did students who used the traditional curriculum. This finding supports [27], which demonstrated that students in a reform-based differential equations class, which rooted instruction in contexts meaningful to the students, acquire a greater conceptual understanding of the material. Later follow-ups indicated that the students who learned DEs with an emphasis on conceptual understanding retained their facility in DE problem solving more completely than did their comparison-group counterparts [28]. Coupled with findings from other studies of traditional curricula and instruction leading to fragile and easily-forgotten understandings of DEs [29, 30], these findings provide a firm empirical grounding for 
Nonmathematics majors tend to show more intellectual curiosity when given a conceptually-oriented and interdisciplinary approach to mathematics study [5]. Engineering students in particular respond positively to mathematics courses that incorporate a contextual perspective. Furthermore, mechanical engineering students tended to understand the concept of derivative as a rate-of-change which differed from mathematics students, who interpreted the derivative as the slope of a tangent line [31, 32]. Later investigations revealed that the differences in students preferences were due to their instructors’ privileging of one interpretation of the derivative over another [33]. When engineering professors taught calculus, they showed preference for a rate-of-change interpretation through the examples they chose and the exam questions they set. While this is a tidy explanation for the students’ concept images of derivative, it also shows that successful engineers have interpretations of mathematics that are distinct from those of mathematicians. By extension, it may be that the nature of the applications-oriented DE curriculum is more commensurate with how the professors in their major classes use mathematics and so they were better able to and more motivated to make sense of the material.

The results of this study are consistent with theoretical findings about the curricula [23] and provide empirical evidence for favorable learning outcomes being based in curricula in line with recommended reforms. However, the material in a DE course is challenging for students since it may be the first time students are challenged with advanced mathematical topics. Adding an additional layer of complexity, ie, including engineering course components may be perceived by both students and faculty as an additional burden. However, they may find challenging classes [34] and place greater value on math classes that have direct relations to their majors [35].  These ideas are confirmed since the contextual curriculum was more cognitively demanding, in many respects, than the traditional curriculum.
5.
Implications and Future Research

The current study demonstrated that engineering students using a conceptually organized and contextually relevant were better able to solve differential equations problems than students using a traditional curriculum.  Research suggests that engineering students struggle both in applying their mathematics knowledge to their major courses [2, 1, 8] and cognitively with the content of differential equations [16, 10, 27]. Several teaching strategies have been suggested or summarized in the literature [36, 4, 3, see]. Underlying this research is the view that engineering students need to approach the study of mathematics in a different way; perhaps in a way that requires direct links between mathematics and the physical world it represents. The results of this study provide empirical evidence in favor of implementing curricula that are designed to support students’ transfer of knowledge from mathematics to their home disciplines. Yet, a focus on content is not the only material upon which students and educators should focus [37]. We also need to help students develop facility with problem-solving heuristics, help them identify and access resources, help them understand the role of mathematics in design sciences, and reinforce good mathematical practices that they can take with them to their major disciplines.

Since the study was not a randomized controlled experiment, there may be other factors intervening besides prior mathematics achievement. However, the two samples of students did have similar mathematics, science, and engineering backgrounds at the collegiate level as well as had similar levels of collegiate experience and scholastic demands on their time external to DEs. This study is further limited in three ways: its size, its scope, and its duration. A larger sample, with random assignment, would be necessary to determine whether the curriculum is actually causing Group B’s superior performance. The study is limited in scope the quantitative analyses provide no information on what it is that the students are learning. A more detailed examination of what contributed to the differences in students’ scores is warranted. The third limitation is related in that a detailed qualitative analysis of the students written responses reveals little of their understanding of DEs and the subject’s role in engineering. Conversations with the students, both while learning the content and after the end of the course, could shed light on this matter.

A study of the impact of the applications-oriented approach beyond the end of the course is necessary. In particular, the study of students’ DE knowledge, and use of that knowledge, is recommended. [38] suggests that transfer is most likely to occur when overlap is recognized in the current (math) and the target (engineering) contexts. Thus, efforts like the current project, and those discussed within, are promising. Indeed, findings reported here could be extrapolated to support a wide range of other model-centered approaches [such as 39, 4] In order to evaluate and improve current mathematics programs to be more relevant to engineering students, we must also take stock not only what mathematics these students need to know, but also how they need to be able to use it. The engineering sciences and mathematics are connected and both require flexible and creative thinking. Communications between university mathematics and engineering faculty should be encouraged so that coursework and programs can be developed in conjunction.
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