
“… and a Little Child Shall Lead Them.”
1John R. Allen, 2Ruth E. Davis
retired, Los Gatos, USA, jallen@engr.scu.edu1;
Santa Clara University, Santa Clara, USA, rdavis@scu.edu2
Abstract

It is clear that modern engineers must be fluent at some level with the notions of computational communication and concurrency and the overarching concept of cooperating agents. Unfortunately these ideas are most usually presented in a technical jargon involving foreign notions like threads, critical sections, and deadlock. While the latter notions are important to those who implement the ideas they are no more relevant to computational engineering than machine shop and earth moving are relevant to mechanical or civil engineering. In this spirit we suggest a path to introduce computational agency to engineering curricula without being sidetracked by programming language- and implementation-details.
1.
Introduction
Initially we planned to follow two languages that were developed at M.I.T. for young children —StarLogo[1] and Scratch[2], which utilize similar graphical drag-and-drop techniques for constructing programs with minimal concern for syntax rules, while exemplifying two distinct approaches to presenting computational processes. As our ideas developed it became clear that StarLogo, with its emphasis on massive parallelism as embodied in an unlimited number of user controlled “turtles”,” offered an opportunity to break more cleanly from the historical roots of computation.

The root that tends to trip-up modern computation is its past high-regard for termination. In pre-historical times, one was always concerned that an algorithm terminate and an answer be produced. Everything from numerical calculations to data base searches was premised on the expectation of convergence and termination. That view is the antithesis of what’s expected in modern computation: we don’t want our operating system, our net connection, or our cell phone network to “terminate.” We expect, and depend on, their continuous operation.

Our applications understand how to address non-termination, and yet the implementations of those applications are usually expressed in languages derived from those used in the world of terminating computation. We should be able to do better — to develop programming languages whose constructs are closer to the informal intention of the application, and then to supply techniques that make it easier to prove that our expressions in that language meet those intentions. One of the first targets of a revamped notation should address the unnecessary sequentiality that pervades traditional languages. “First do this … and then do that” is a hallmark of most programming languages.

2. Chemical Computation
Picture a chemical “soup” which contains “molecules,” each of which floats independently — say under the influence of Brownian motion. Let’s call our molecules m1 … mn …; and let’s notate a collision of two molecules by “mi(mj” where i(j of course. Our whole approach to computation will be based on this notion of collision and the debris that follows. A rule of the form mi(mj (mk indicates that after the collision, mk magically appears as its parents mj and mi disappear. These collision-triggered, rewriting rules will get more complex as we go along. We can tame sequentiality by allowing any (and all) collisions to occur without regard to order; we can tame termination by allowing collisions to occur as long as they are able. The only restriction we place on collisions is that for any two simultaneous collisions four distinct participants are involved.

To exemplify the basic computational metaphor, picture a soup containing molecules each of which possesses a positive integer. When two of these molecules collide, they expire but as they do, they hatch a new molecule that possesses the product of the parent molecules. For simplicity we could write the rule as

x(y (x(y

Our computation simply involves monitoring for collisions and carrying-out multiplications accordingly.
In this example, the process terminates; the solution will reach equilibrium when there is only one molecule, and so no collisions, and therefore no multiplication can occur. That single molecule will possess the product of the initial molecules. Nothing is presumed about the order in which the multiplications occur, and the final result will not depend on that order. If for example, we began with n molecules, each containing a unique integer between 1 and n, then our final value is the factorial of n.

For most of this discussion we will restrict ourselves to this constrained view of parallelism where many activities can occur simultaneously, but the final outcome, if there is one, will not depend on that order. This is a restricted, but surprisingly powerful form of computation and one that deserves special attention and special languages. Of course the implementers of such languages will have to be concerned with communication and synchronization issues, but these don’t appear at the language level anymore than stacks and storage management appear in a modern high-level sequential language. Even more specifically, we will deal with languages well-adapted to applying simple operations to massive amounts of structured data — what’s called “single instruction, multiple data” (SIMD) format. Our simple view of “computation as chemical reaction” is a natural model for the structure of such languages.

But how far can such a simple model go? With a simple enhancement of the rules forms from collision (action to collision (action if condition we will see applications in chemistry, biology, botany; in artificial intelligence, robotics, and in business and finance. We will discuss some of these in a later section.

Already we can highlight a couple of general points about this approach. First there’s really no notion of termination. The “result” of the computation might be described by realizing that the process has reached equilibrium, though if it were possible to introduce new molecules into the soup, the process could resume. The “result” might be defined in terms of a pattern that appears in a reaction that doesn’t reach equilibrium. For example Craig Reynolds’ [3] explanation of flocking and schooling behavior can be characterized by such a collision-based scheme. Furthermore there’s a local/global view of computing going on here. In the x(y (x(y case, the local computation is simple multiplication while the global view is “it computes factorial.” And the local behavior of Reynolds’ “boids” explains the global appearance of the group. Cooperative robotic clusters may profit from such insights in the future. [4]
3. Gamma: A chemical reaction language

The first formal treatment of computation as chemical-reaction appeared in a language named Gamma [5] in 1986. As the potential scope of the idea was recognized it was applied to wider areas, and the basic theory was expanded to encompass more exotic models of computation.

Gamma and its descendants are usually expressed in a traditional formal notation, but in this introduction to chemical computation we have taken advantage of a rather playful software system, StarLogo [1], that can visually demonstrate the metaphor in an immediately understandable form. First, StarLogo has an unlimited number of turtles; turtles are partitioned into distinct “breeds.” Each individual in a breed has its own internal state — its local, shape, color, heading — all the things that are expected for a turtle. Each breed can also define specific properties that its individuals might possess. Primitive communication among individuals is rather barbaric: the programmer defines what actions should be taken when instances of breeds “collide.” One possibility is to destroy the miscreants and hatch new ones. In StarLogo TNG (The Next Generation), programming is performed in a “drag-and-drop” setting, making it difficult to create syntactically incorrect programs. The constructs of the language are presented as Lego-like blocks whose connector slots indicate the kind of component that is expected; and if one attempts to attach an inappropriate component the system will refuse it. Finally, the world in which the turtles operate is three-dimensional. The terrain over which the turtles can move is partitioned into square “patches.” Turtles are able to sample and modify the contents of these patches.

This paper is not the first place that Gamma and StarLogo have met; both were implemented on the Connection Machine (CM) [6]. The Connection Machine was a SIMD supercomputer built in the 1980s whose applications included image processing and simulation, and other fields whose characteristics lent themselves to massive data-parallel computations. It’s not too surprising to see that Gamma programs fit the CM model; it may be surprising to see the CM architecture as a natural vehicle on which to implement a children’s language.

In their simplest form, Gamma programs contain two components: a multi-set of data and a collection of re-write rules. Each rule contains a condition-predicate to be satisfied by a sub-collection of elements from that multi-set; an action is specified to be applied to those elements, and the result of that action replaces the original sub-collection. We’ve seen both of these features camouflaged as StarLogo operations:

Rather than a collision (x(y), in Gamma we’d write x,y meaning that x “is a neighbor of” y, and rather than talking about m1, …mn floating in a soup under Brownian motion, we’d write {m1, …, mn} where we use “{“ and “}” to indicate not just sets, but multi-sets. A multi-set (also known as a “bag”) is a set-like collection except that there may be duplicate elements: {2, 3} and {2, 3, 3} are equal as sets but distinct as multi-sets. But {1, 3, 2, 3} is the same multi-set as {3, 2, 1, 3}. Whenever we write “set brackets” in this paper, we’re referring to multi-sets.

We resurrect the effect of Brownian motion by noting that as an operation “,” is both associative and commutative. Thus in a set (or in a bag) every element is “a neighbor of” any other element. We will add more muscular data structures in a minute, but multi-sets are extraordinarily powerful. Many data-manipulation tasks are naturally expressed in terms of multi-set operations. But multi-sets are like dotted-pairs in Lisp: they’re sufficient but not necessarily the most natural or effective representation. So let’s generalize the Gamma model.

Consider how one might approach a sorting problem in a soup-like setting. As things stand now, we need to implement the notion of a sequence as a multi-set. To do so, we’ll place two pieces of information in each molecule, representing an index and an associated value.

For example a sequence <2, 4, 7, 3, 4> would be found in the soup as the pairs (1, 2), (3, 7), (4, 3), (2, 4) and (5, 4). So our rule would begin
(i x)((j y) (??

To complete the action-portion of the rule, note that if i<j and x≤y then nothing need be done; otherwise we need to spawn two replacement pairs (i y) and (j x), giving a Gamma rule:

(i x), (j y) ((i y), (j x) if i<j and x>y

Notice that we’ve overloaded our humble “,”: it is “collision” on the left-side of a rule but “birth” on the right. Several functional programming languages do something similar, employing rules that match data structures with a left-hand pattern-match indicating decomposition and the expression on the right of the rule indicating construction.

This Gamma sort program again illustrates the local/global evolutionary behavior: we only swap pairs locally, but when the situation reaches equilibrium, a global perspective shows we have created a sorted sequence …well actually a sorted multi-set. We can do better.

Let’s upgrade our data representation from multi-sets to sequences [7], and in doing so we redefine neighbors such that x;y means that x “is the left neighbor of” y in a sequence. For example, (1; 4; 3) is a sequence, while (1; 3; 4) is a sorted sequence. In this representation our sorting-recipe becomes
x;y (y;x if y>x
4. Timing, Termination, and Topology

It’s clear from the examples that much extraneous sequentiality has been suppressed, as are the implementation-level issues involving parallelism and concurrency. The point is that we don’t need to concern ourselves with that level of detail just as modern programming languages suppress the details of storage management, leaving it up to a garbage collector. So we may be in an era like lisp in the 60’s,when recursion was too expensive and garbage collection was too expensive. Maybe now the non-determinism of chemical reaction computation is too expensive. Maybe not; it’s still the case that programmer time is too expensive.

Termination has also been tamed, being replaced by the notion of equilibrium. It might be the case that a configuration won’t reach equilibrium. Clearly a rule like x(x, x won’t result in convergence, but there are useful examples of chemical systems whose behavior doesn’t require equilibrium.

Furthermore, there’s nothing that precludes the possibility of resurrecting a system from steady-state by introducing elements from outside the system. Client-server systems fit this description as do many other reactive models.
It’s also possible to extend the treatment of data. We illustrated the shift from multi-sets to sequences. Descendants of Gamma, like MGS [7], have generalized the expression of data structures in this chemical setting much like Abstract Data Types have enriched functional languages. But in this more general chemical setting we still describe the rules in terms of replacing a collection of elements, defined in a neighborhood, with a new collection. And the transformations that are found in these rules fit the functional programming model: rules to transform each element of a collection — called “maps”; and rules to coalesce collections —called “accumulators.”
5. Building Gamma Programs

The rule-portion of Gamma programs need not be restricted to a single rule. Rules may also be composed to elicit more complex behavior. Consider for example the usual recursive definition for Fibonacci numbers:

Fib (n) = if n ≤1 then 1 else Fib(n-1) + Fib(n-2)

We can compute this chemically in two phases: first unwind the recursion by decomposing the argument into an appropriate number of ones; then use a second phase to sum up the assembled horde. The two basic reactions define these processes:
Process P1:

0 (1 1(1

n (n-1, n-2 if n>1

And Process P2:

x, y (x+y.

Obviously we have to be precise about how these processes interact. One way is to compose them as in
Fib (n) = m where {m} = P2 (P1 ({n})
The composition indicates that P1 completes its decomposition to 1s before P2 begins its summation. But is that sequentiality really necessary? Another possibility does exist: make the molecules that the first process generates in its decomposition distinct from the molecules that are used in the summation process. That way the two processes can overlay their computation without interference. We will notate such a new molecule by <n> instead of n. Thus:

Process P​1’
<n> (<n-1>, <n-2> if n>1

<0> (1

<1> (1

And the chemical Fibonacci becomes:
Fib (n) = m where {m} = P1’+P2 ({ <n> })
Where P+Q means that the rules for processes P and Q are free to act whenever they are able.

There is a well-defined algebra of chemical processes that explains when processes can be combined [8]. Such algebraic results are a step toward expressing and proving properties of such parallel techniques. Such proofs are needed if we expect to move software engineering from a craft to a modern theory-based engineering discipline.

This is clearly not an elegant solution to the Fibonacci problem, but we gave it to (a) illustrate the possibilities of overlapping behaviors; (b) to hint at the possibilities of algebraic results and (c) to illustrate Google’s MapReduce [9] as a chemical process.

In its simplest form, the map-portion of MapReduce involves applying a function to each element of some collection, generating an intermediate result. That intermediate result is them “reduced” or “accumulated” to form the final result.

The canonical example for MapReduce involves counting the number of occurrences of each word in a collection of files. This is done in two passes. Like the original version of Fib, the map phase builds a multi-set of pairs, each pair containing a word and the count of 1. The second pass is similar to the second pass of Fib: for each word, accumulate the results to give its final count.
In the actual MapReduce example, there’s an intermediate internal pass that sorts the mapped results such that each instance of a particular word (and its singleton count) are adjacent. Thus:

P1: w(<w, 1>

Ps: <w1, 1>, <w2, 1> (<w2, 1>, <w1, 1> if w1 > w2
P2: <w, n>, <w, m> (<w, n+m>
 with:
WordCount (s) = P2 (Ps (P1(s)))
But of course, like Fib, we’re interested in replacing the sequential composition of processes with an overlapped approach if possible. In this case several techniques suggest themselves.

Unfortunately MapReduce is constructed such that users are only able to influence its behavior through certain specific slots: a mapping function and a reduction function. MapReduce was built with specific applications in mind and that limits consideration of the more general algebraic manipulations that we illustrated with Fib. But when dealing with an algebraic approach to languages, we need to supply appropriate functionality and flexibility at the substrate before getting involved with specific idiosyncrasies of applications. These primary issues involve termination, parallelism, and topology.

Actually most of the examples we’ve seen follow the old paradigm by moving to steady-state. Even MapReduce and its follow-on language Sawzall [10], finesse the termination issue: both of them are activated in “batch mode.” Both expect data files as input and produce files as output.
6. Generalizing Gamma
There are two ways to advance; one is to define a persisting (non-terminating) behavior internal to the initial configuration perhaps a simulation of some self-organizing system like flocking. Another way is to extend the chemical reaction model to allow additional molecules to enter the “soup.” We mentioned this possibility in the opening StarLogo discussion of factorial. State-change in the StarLogo examples was initiated by “collision” ((). We can generalize this basic idea, making “collision” a specific kind of an activity that we’ll call an event. A specific collision-event has unique characteristics, like time of occurrence, location, participants, etc. that would help a collision-event processor (called an insurance company for example) assign blame and/or compensation.
The underlying mechanism for handling events is already in our discussion. It’s our rules:
event (action if condition
and now, rather than triggering the rules by collision under Brownian motion, they are triggered by the occurrence of external events.

Systems that operate on such event-condition-action (ECA) rules are in use under various names. In the world of “knowledge engineering” they are called “expert systems.” In a more general setting in which temporality and event-causality may play a primary role they are called Complex Event Processing (CEP) systems [18].
CEP systems tend to fall into the general class of problems addressed by the mechanisms described in this paper: the analysis, not modification, of massive amounts of data. These constraints lend themselves to implementation on data-parallel machines (SIMD) and expression in a functional language where modification of existing data is disallowed.

Of course, the issues of concurrency have not gone away; they just aren’t of concern at the level at which users have to operate.

7. Applications
As the metaphor of computation as chemical-reaction became more well-known and more application possibilities were recognized, generalizations were also proposed. One of the first was the Chemical Abstract Machine (CHAM) [11]. Rather than view reactions in a global setting, the notion of a “membrane” [12] localized the applicability of rule-sets while supplying techniques for passing results back-and-forth across the membranes [13]. These formal notions have been used to develop calculi for biochemistry and bio-engineering [14, 15]. Computation with membranes enlarged the scope of chemical computation, but also opened up the full range of non-deterministic processes and problems. Not only might the order of computation be non-deterministic, but the outcome might depend on the computational order [16, 17].
Applications that thrive on the analysis of event streams, or the less well-behaved event “clouds,” (where events come from multiple sources with obscured causality origins) are varied and rampant. A detailed discussion of Complex Event Processing (CEP) can be found in [18]. The overarching theme is that the application is intimately concerned with monitoring and reacting to a massive influx of external time-dependent events and making decisions based on the timely analysis of those events. A key here is to supply a language in which events and responses can be expressed at a high level that does not impose unnecessary timing constraints. The ideas of chemical computation fit these requirements. We sketch three areas:
An Intelligent Transportation System [19] expects to track and react to changing traffic situations. RFID-tagged vehicles traversing sensor-laden highways can give rise to events as varied as accident detection, signaled by two or more cars remaining stationary for a specific amount of time; and congestion toll pricing, signaled by global properties of the system.

A primary application of CEP has been High Speed Trading (HST) or “algorithmic trading.” The issue is to collect and analyze massive amounts of real-time trading information and then have the machine make expert-level decisions about buying and selling financial vehicles [18].
Finally, in a less hectic but equally important area, business process management (BPM) systems have the same event-driven flavor. Corporations as varied as super market chains and airlines rely on CEP-driven software to coordinate facilities with one another to assure that raw materials, finished products, orders, and deliveries work together to assure a successful business model [20].

Finally, recall that StarLogo (and its descendant NetLogo [21]) include the notion of “patches.” Turtles can modify and sample patches on the terrain over which they move. These facilities can be put to practical use in our chemical rules to emulate Cellular Automata [22].
While StarLogo has concentrated on making the multi-turtle programming model (and indirectly the chemical model) approachable for novices, NetLogo has developed more substantial examples in science and engineering. We would encourage interested readers to visit the NetLogo site [21] and examine their extensive library.
References

1. M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds, The MIT Press, Cambridge, 1994
2. M. Resnick, et al, “Scratch: Programming for All.” Communications of the ACM, Vol. 52, No.11, 2009.pp. 60-67

3. C. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” SIGGRAPH '87 Conference Proceedings, Vol. 21, No. 4, 1987, pp. 25-34.

4. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,”
[IEEE Transactions on Automatic Control, Vol. 51, No. 3, 2006, pp. 401-420.

5. J-P. Banâtre, P. Fradet, and D. Le Métayer, “GAMMA and the chemical reaction model: fifteen years after.” Multiset Processing, Springer Verlag, LNCS, Vol. 2235, 2001.

6. D. Hillis, The Connection Machine,” MIT Press, MA, 1989.

7. A.Spicher, O.Michel, and J.-L.Giavitto. “Spatial Computing as Intensional Data Parallelism.” Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems - Spatial Computing Workshop, 2009

8. C. Hankin, D. LeMetayer, and D. Sands, “A Calculus of Gamma Programs,” INRIA Report 1758, Renne, October 1992

9. J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December 2004

10. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan “Interpreting the Data: Parallel Analysis with Sawzall,” Scientific Programming Journal: Special Issue on Grids and Worldwide Computing Programming Models and Infrastructure Vol. 13:, No. 4, pp. 227-298.

11. G. Boudol and G, Berry, “The Chemical Abstract Machine,” Theoretical Computer Science, Vol. 96,1992, pp., 217-248.
12. J-P. Banâtre, P. Fradet and Y. Radenac, “The Chemical Reaction Model: Recent Developments and Prospects,” Software-Intensive Systems and New Computing Paradigms,
LNCS, Vol. 5380, 2008.
13. G. Paun, “Membrane Computing,” Fundamentals of Computation Theory, Springer Verlag LNCS, Vol. 2751, Berlin, 2003, pp 284-295.
14. L. Cardelli, “Artificial Biochemistry”, http://lucacardelli.name/Papers/Artificial%20Biochemistry.pdf

15. Algorithmic Botany http://algorithmicbotany.org/papers/

16. R. Milner, Space and Motion of Communicating Agents, Cambridge University Press, 2009.

17. K. Schmidt, D. Anicic, and R. Stuhmer, “Event-driven Reactivity: A Survey and Requirements Analysis,” Proceedings of International Workshop on Semantic Business Process Management, Tenerife, Spain, 2008.

18. D. Luckham, The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, Addison Wesley, 2002

19. A. Arasu, et. al,”Linear Road: A Stream Data Management Benchmark,” Proceeding of the 30th VLDB Conference, Toronto, CA, pp. 480-491

20. J-P Banatre and T. Priol, “Chemical Programming of Future Service-oriented Architectures,” Journal of Software,” Vol. 4, No. 7, September 2009, pp738-746.

21. U. Wilensky, “Netlogo,” http://ccl.northwestern.edu/netlogo/
22. A. Jimenez, K. Tiampo, and A. Posadas, “An Ising Model for Earthquake Dynamics, “ Journal in Non-linear Processes in Geophysics, Vol. 14, No, 1, January 2007, pp. 5-15

