QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR
TEACHING QUEUEING THEORY

Fernando C. Castario Mariiio e Paulo R. L. Gondim
System Engineering Department - Instituto Militar de Engenharia - IME
(Rio de Janeiro - RJ)

Abstract - Queueing systems are present in an
enormous quantity of areas and situations of the real
life, such as communication, computing, banking and
transportation systems. Traditionally, queueing
theory teaching is done by the development of
formulations used for resolution of different kinds of
queueing systems. Through these formulas we can
have important information for the analysis of these
queues and evaluate the influence of several
parameters of interest such as the average number of
users and average waiting time in the system.
Depending on the adopted model, the related
formulations can be somewhat complicated, and the
student can’t have adequate qualitative and
quantitative notions about the influence of each
parameter. In this work we describe the development
and the use of a software tool (OSOLVE) that
facilitates the learning of queueing theory. This
software implements formulas from traditional
queueing theory, speeds up the final results and
makes easy the analysis of the influence of each
parameter in the final result, thus giving better
notion of the process behavior. There is also a
module that allows the user to see some graphics for
variables behavior analysis. During the construction
of OSOLVE we 've used an object-oriented language,
allowing the use of principles such as inheritance,
polymorphism and modularity. The system has been
successfully used for the study and dimensioning of
computer communications networks and
transportation systems.

1. Introduction

Queueing theory teaching has been done,
frequently, by the use of traditional mathematical
developments. With that theory we can obtain
formulas for the performance analysis of different kinds
of queues. The development of these formulas is very
important for apprenticeship, once the student can
access the formulations used for queue resolution,
develop logical argumentation over different
theoretical aspects involved and then generate new
results. Applying these formulas one can obtain a lot
of information about the queueing system performance
and thus evaluate the application of that kind of queue
under real conditions. Whereby these formulas are
generally complicated, it is difficult to obtain the
results manually.

The development of a software tool
(QSOLVE) that implement these formulas and speeds
up the final results makes easy the analysis of the

influence of each parameter in the final result, giving
better notion of the process behavior.

This work is organized as follows: in section
2 we present an overview of the queueing resolution
system and describe the object-oriented approach used
for its construction; in section 3 and 4, the modules
for effective measure calculation and graphical
exhibition are described; in section 5, the Erlang B
and Erlang C formulas are used for the dimensioning
of delay-based and loss-based systems, respectively;
the section 6 outlines our main conclusions.

2. Queueing Resolution System

The queueing resolution
composed by three modules (fig.1):
a) Module for effective measure calculation

The user can have some effective measure
giving as input some necessary parameters depending
on the kind of queue.
b) Module for graphical exhibition

Graphics are exhibited showing the behavior
of some variables.
¢) Module for system dimensioning based on Erlang
B and Erlang C formulas.

Dimensioning of parameters given the
blocking probabilities for M/M/c/c and M/M/c
queues.

system s

This system was implemented using
DELPHI programming language, version 2.0,
considering that such language presents components
which facilitates the user interface implementation and
allows object creation.

Several classes of objects were created, such
that T MM1, T MMm, T Mminfinito, T _MGI,

T GGI, T MDI, T MGllefs, T MMIK and
T MMcK implementing the M/M/1, M/M/m,
M/M/¥, M/G/1, G/G/1, M/D/1, M/G/1 LCFS,

M/M/1/K, M/M/c/K queues respectively.

These classes were developed so that a
instantiated object once initialized with input
parameters, compute all effective measuring for that
class. In this sense, all formulas are implemented
inside the class and new formulas can be added.

The priority queues were implemented by
specific modules.

ai Filas - definicdo da fila

Selegdn Grificos Feramentas

Resolugao de Sistemas de Filas

& exponencial

 deterministico

~Chegada——— Servigo
& exponencial
 geral © geral
 deterministico
 arlang erlang
~Cap. Sistema
infinita 2
 finita Ll
 infinito

Disciplina

& FIFD

& LIFD

& PRIO. MAD FREERMF.
& PRIO. FREEMF. RES.

Nimero de Servidores

Sair

3 - Module for effective measure

Figure 1. Tool presentation

calculation

The formulas for effective measure calculation
were based on traditional queue literature [1], [2], [3],

[4], and for each case some parameters are necessary
(fig 2).
In Table 1, we can see these parameters for
each kind of queue, using Kendal’s notation:

Table 1 . Parameters for each kind of queue

Queue Parameters Effective Measure
M/D/1 - Arrival Rate - Average Number in the System
- Service Rate - Average Time in the System
- Average Number in the Queue
- Average Time in the Queue
M/M/1 - Arrival Rate - Average Number in the System
- Service Rate - Average Time in the System
- Average Number in the Queue
- Average Time in the Queue
M/M/m - Arrival Rate - Average Number in the System
- Service Rate - Average Time in the System
- Number of Servers - Average Number in the Queue
- Average Time in the Queue
- Erlang C
M/M ¥ - Arrival Rate - Average Number in the System
- Service Rate - Average Time in the System

- Average Number in the Queue
- Average Time in the Queue

M/M/1/k - Arrival Rate - Average Number in the System
- Service Rate - Average Time in the System
- Users in the System - Average Number in the Queue
- Average Time in the Queue
M/M/c/K - Arrival Rate - Average Number in the System
- Service Rate - Average Time in the System
- Users in the System - Average Number in the Queue
- Number of Servers - Average Time in the Queue
- Erlang B (for ¢ = K)
M/G/1 - Arrival Rate - Average Number in the System
- Average Service Time - Average Time in the System
- Second Moment of Service Time | - Average Number in the Queue
- Average Time in the Queue
M/G/1 LIFO - Arrival Rate - Average Number in the System
- Average Service Time - Average Time in the System
- Second Moment of Service Time | - Average Number in the Queue
- Average Time in the Queue
M/G/1 Non - Arrival Rate (for each priority) - Average Number in the System (for each
preemptive - Service Rate (for each priority) priority)
priorities - Average Time in the System (for each
priority)
- Average Number in the Queue (for each
priority)

- Average Time in the Queue (for each priority)

M/G/1 Preemptive
resume priorities

- Arrival Rate (for each priority)
- Service Rate (for each priority)

-Average Number in the System (for each
priority)

G/G/1

- Average Arrival Time
- Second Moment of Arrival Time
- Average Service Time
- Second Moment of Service Time

- Upper Limit For Average Time in the Queue

arquive

i MM

Taxa de chegada

Taxa de servico

~Resultado

Mimero médio no sistema = 3,000
Tempo médio no sistema = 10,000
Mdmera média na fila = 8,100

Tempo médio na fila = 3,000

MIM/1

E—

H]]QH

M= ||

Yoltar |

Figure 2. Parameters definition for M/M/1 queue

4 - Module For Graphical Exhibition

This module allows the user to see some
graphics for analysis of variables. These graphics are
generated by the defined objects for each queue. For
each graphic the user can indicate the X and Y axis
limits for a detailed study in a specific region of the
graphic. This module allows the superposition of
graphics in the same figure for behavior comparison of
different queues or the same queue with different
parameters (fig 3).

Table 2 shows the implemented graphics.

Table 2 . Implemented graphics for each kind of

Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

queue

Kind of | Graphic

queue

M/D/1 Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/1 Number in the System x Utilization

Factor
Time in the System x Utilization

M/M/m Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/1/K Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/c/K Number in the System x Utilization

Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

S - Module for system dimensioning
based on Erlang B and Erlang C
formulas

This module is composed by tree sub-
modules:

1) Sub-module for dimensioning based on
Erlang B (M/M/c/c queue) formula

2) Sub-module for dimensioning based on
Erlang C (M/M/c queue) formula

3) Sub-module for dimensioning based on a
pre stored table with values for Erlang
B (M/M/c/c queue) formula

5.1) Sub-module for dimensioning based on
Erlang B (M/M/c/c queue) formulas

The Erlang B formula allows to compute the
blocking probability based on the number of servers,
service rate and arrival rate.

A problem occurs when someone wants to
compute the number of servers, service rate or arrival
rate based on a given blocking probability. For
example, a common practical problem is: how many
servers do we need to obtain a blocking probability
under a specific value given the arrival rate and the
service rate supported by each server? This problem
occurs because it is difficult to invert the Erlang B
formula to compute directly the others parameters
based on blocking probability.

A solution to this problem is to compute the
blocking probability for one server, if it not comply,
compute the blocking probability for two servers,
and successively until the blocking probability
comply with the specified.

Given that the Erlang B formula is complex,
without a computer this process is very slow and

subject to errors. Technicians usually have a table for
pre defined values, and then they try to fit the real
problem in the cases of the table. With a computer,
the user can find accurate values and the process
becomes very efficient.

5.1.1) Dimensioning the number of servers:

The program considers initially one server,
computes the blocking probability given the arrival
rate and the service rate (or utilization factor). If the
obtained blocking probability is greater than the
requested, the program makes the same operation for
two servers, and successively, until the computed
blocking probability comply with the requested.

Then, for dimensioning the number of
servers, the user informs the arrival rate, the service
rate (or utilization factor) and the upper limit of the
blocking probability (fig 4).

5.1.2) Dimensioning the arrival rate

This problem is analogous to 5.1.1. In this
case, the user informs the number of servers, service
rate and blocking probability. The user also needs to
inform to the system the arrival rate which will be
considered by the system to initiate to processing and
to incrementing the arrival rate to next attempt.

For dimensioning the arrival rate, the user
informs the server number, the service rate , initial
arrival rate (upper limit), the step and the upper limit
of the blocking probability.

5.1.3) Dimensioning the service rate

This process is analogous to the above
described in 5.1.1.

j. FormGrafico

Figure 3. Example of a graphic generated by QSOLVE

i Erlang B

Figure 4. Example of the dimensioning the number of servers

For dimensioning the service rate, the user informs the server number, the arrival rate , initial service
rate (lower limit), the step and the upper limit of the blocking probability.

5.1.4) Dimensioning the utilization factor
This process is analogous to the above described in 5.1.1.
For dimensioning the utilization factor, the user informs the server number, the initial utilization factor
(upper limit), the step and the upper limit of the blocking probability.
5.2) Sub-module for dimensioning based on Erlang C (M/M/c queue) formulas
This process is analogous to presented in 5.1.

5.2.1) Dimensioning the number of servers

For the number of servers dimensioning, the user will inform: arrival rate, service rate and upper limit
of the blocking probability.

5.2.2) Dimensioning the arrival rate

For the arrival rate dimensioning, the user will inform: server number, initial arrival rate (upper limit),
step, service rate and upper limit of the blocking probability.

5.2.3) Dimensioning the service rate
For the service rate dimensioning, the user will inform the server number, the arrival rate , initial
service rate (lower limit), the step and the upper limit of the blocking probability.
5.3) Sub-module for dimensioning based on a pre stored table with values for Erlang B (M/M/c/¢c

queue)

This module shows a pre stored table [5], with the blocking probabilities for some cases (fig 5).

i Etlang B - Tabela ==
arquive
Erlang B - Consulta a Tabela
Carga de Trafego (Erlangs)
Probabilidade de Blogueio

M 10z [12% [15% (2o [30x [sox [7ox [rox sz o Jaox a0z [s0% Iii
1 oo inmA (00152 00204 (00309 00528 00763 0111 0176 0250 0423 0GE7 100
2 0153 0168 0190 (0223|0282 039 0470 (0595 0795 100 145 200 (273
3 04565 0489 (0535 0602 (0715 0839 106 137 160 193 (23 348 (459
Nl 0969 0922 (0892 103 (126 152 175 205 260 (295 (389 502 |GE0
a |5 136 143 152 1B [1.88 222 250 288 345 4010 519 GED (544
m |6 1.91 200 2n 228 (254 296 (330 (376 (444|511 £.51 813 104
e 7 250 280 274 294 [325 374 414 4F7 B4 B23 FER 980 124
M E 313 325 340 (363 (399 454 500 580 RS0 737 4 114 143
3 378 332 (403 434 (475 537 588 G55 755 @62 106 130|163
d [10 446 4B 481 508 553 622 G775 862 988 120 147 183
e [11 516 532 554 584 |33 708 769 B49 963 109 133 163 203
5 [12 588 605 629 GG 714 795 |BET 947 108 120 147 180 (222
= |13 6,61 680 705 740 [797 883 954 105 14 132 181 196 242
v |14 735 7E6 782 820 [se0 ara 105 M5 130 144 175 212 |22
v |15 8.1 833 &R 3,01 965 106 114 125 [14] 156 189 223 282
J | 888 [9M a4 983 105 115 124 135 152 168 203 245 (302
o 7 965 989 102 07 (114 125 134 (145 163 180 217 22 (322
i 04 107 1.0 115 [122 134 143 155 174 182 231 278 (342
e [19 1.2 115 118 123 [131 143 153 166 185 204 245 295 362
s a0 120 123 127 13z [4n 152 163 (175 196 216 259 312 |32
21 128 131 135 140 143 182 173 187 208 228 273 328 402
2 127 140 143 143 [158 171 182 197 219 241 287 M5 421

23 145 148 152 158 167 181 192 207 lzan 253 a0 3.1 441 =l

Saltar |

Figure 5. Erlang B pre stored table

6. Conclusion

In this work, we presented an auxiliary
system to queueing theory teaching, giving a better
notion of the influence of each parameter in the final
result for each kind of queue. The system gives the
results quickly, allowing the user to test values and
to analise the parameter influence.

With QSOLVE, the user can see some
graphics and compare the behavior of different kinds of
queues. The user can also dimension the various
parameters of M/M/c/K and M/M/c queues based on
Erlang B and Erlang C formulas.

Future work includes new graphics,
additional characteristics parameters for each kind of
queue, inclusion of new queues and the development
of simulation modules that will help in the study of
more complex and analytically intractable systems.

References

1) Kleinrock, L.1975. Queueing Systems, Vol. L
New York: Willey.

2) Kleinrock, L.1975. Queueing Systems, Vol. IL
New York: Willey.

3) Gross, D., and Harris, C. M. 1985. Fundamentals
of Queueing Theory (2nd ed.). New York:Willey

4) Bertsekas, D. P. , and Gallager, R. 1992. Data
Networks (2nd ed), Prentice Hall.

5) Yacoub, M. D., 1993. Foundations of Mobile
Radio Engineering, CRC Press.

