
QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR
TEACHING QUEUEING THEORY

Fernando C. Castaño Mariño e Paulo R. L. Gondim
System Engineering Department - Instituto Militar de Engenharia - IME

 (Rio de Janeiro - RJ)

Abstract - Queueing systems are present in an
enormous quantity of areas and situations of the real
life, such as communication, computing, banking and
transportation systems. Traditionally, queueing
theory teaching is done by the development of
formulations used for resolution of different kinds of
queueing systems. Through these formulas we can
have important information for the analysis of these
queues and evaluate the influence of several
parameters of interest such as the average number of
users and average waiting time in the system.
Depending on the adopted model, the related
formulations can be somewhat complicated, and the
student can’t have adequate qualitative and
quantitative notions about the influence of each
parameter. In this work we describe the development
and the use of a software tool (QSOLVE) that
facilitates the learning of queueing theory. This
software implements formulas from traditional
queueing theory, speeds up the final results and
makes easy the analysis of the influence of each
parameter in the final result, thus giving better
notion of the process behavior. There is also a
module that allows the user to see some graphics for
variables behavior analysis. During the construction
of QSOLVE we’ve used an object-oriented language,
allowing the use of principles such as inheritance,
polymorphism and modularity. The system has been
successfully used for the study and dimensioning of
computer communications networks and
transportation systems.

1. Introduction

Queueing theory teaching has been done,
frequently, by the use of traditional mathematical
developments. With that theory we can obtain
formulas for the performance analysis of different kinds
of queues. The development of these formulas is very
important for apprenticeship, once the student can
access the formulations used for queue resolution,
develop logical argumentation over different
theoretical aspects involved and then generate new
results. Applying these formulas one can obtain a lot
of information about the queueing system performance
and thus evaluate the application of that kind of queue
under real conditions. Whereby these formulas are
generally complicated, it is difficult to obtain the
results manually.

The development of a software tool
(QSOLVE) that implement these formulas and speeds
up the final results makes easy the analysis of the

influence of each parameter in the final result, giving
better notion of the process behavior.

This work is organized as follows: in section
2 we present an overview of the queueing resolution
system and describe the object-oriented approach used
for its construction; in section 3 and 4, the modules
for effective measure calculation and graphical
exhibition are described; in section 5, the Erlang B
and Erlang C formulas are used for the dimensioning
of delay-based and loss-based systems, respectively;
the section 6 outlines our main conclusions.

2. Queueing Resolution System

The queueing resolution system is
composed by three modules (fig.1):
a) Module for effective measure calculation

The user can have some effective measure
giving as input some necessary parameters depending
on the kind of queue.
b) Module for graphical exhibition

Graphics are exhibited showing the behavior
of some variables.
 c) Module for system dimensioning based on Erlang
B and Erlang C formulas.

Dimensioning of parameters given the
blocking probabilities for M/M/c/c and M/M/c
queues.

This system was implemented using
DELPHI programming language, version 2.0,
considering that such language presents components
which facilitates the user interface implementation and
allows object creation.

Several classes of objects were created, such
that T_MM1, T_MMm, T_Mminfinito, T_MG1,
T_GG1, T_MD1, T_MG1lcfs, T_MM1K and
T_MMcK implementing the M/M/1, M/M/m,
M/M/∞, M/G/1, G/G/1, M/D/1, M/G/1 LCFS,
M/M/1/K, M/M/c/K queues respectively.

These classes were developed so that a
instantiated object once initialized with input
parameters, compute all effective measuring for that
class. In this sense, all formulas are implemented
inside the class and new formulas can be added.

The priority queues were implemented by
specific modules.

Figure 1. Tool presentation

3 - Module for effective measure
calculation

The formulas for effective measure calculation
were based on traditional queue literature [1], [2], [3],

[4], and for each case some parameters are necessary
(fig 2).

In Table 1, we can see these parameters for
each kind of queue, using Kendal’s notation:

Table 1 . Parameters for each kind of queue

Queue Parameters Effective Measure
M/D/1 - Arrival Rate

- Service Rate
- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue

M/M/1 - Arrival Rate
- Service Rate

- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue

M/M/m - Arrival Rate
- Service Rate
- Number of Servers

- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue
- Erlang C

M/M/∞ - Arrival Rate
- Service Rate

- Average Number in the System
- Average Time in the System

- Average Number in the Queue
- Average Time in the Queue

M/M/1/k - Arrival Rate
- Service Rate
- Users in the System

- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue

M/M/c/K - Arrival Rate
- Service Rate
- Users in the System
- Number of Servers

- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue
- Erlang B (for c = K)

M/G/1 - Arrival Rate
- Average Service Time
- Second Moment of Service Time

- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue

M/G/1 LIFO - Arrival Rate
- Average Service Time
- Second Moment of Service Time

- Average Number in the System
- Average Time in the System
- Average Number in the Queue
- Average Time in the Queue

M/G/1 Non
preemptive
priorities

- Arrival Rate (for each priority)
- Service Rate (for each priority)

- Average Number in the System (for each
priority)
- Average Time in the System (for each
priority)
- Average Number in the Queue (for each
priority)
- Average Time in the Queue (for each priority)

M/G/1 Preemptive
resume priorities

- Arrival Rate (for each priority)
- Service Rate (for each priority)

-Average Number in the System (for each
priority)

G/G/1 - Average Arrival Time
- Second Moment of Arrival Time
- Average Service Time
- Second Moment of Service Time

- Upper Limit For Average Time in the Queue

Figure 2. Parameters definition for M/M/1 queue

4 - Module For Graphical Exhibition

This module allows the user to see some
graphics for analysis of variables. These graphics are
generated by the defined objects for each queue. For
each graphic the user can indicate the X and Y axis
limits for a detailed study in a specific region of the
graphic. This module allows the superposition of
graphics in the same figure for behavior comparison of
different queues or the same queue with different
parameters (fig 3).

Table 2 shows the implemented graphics.

Table 2 . Implemented graphics for each kind of
queue

Kind of
queue

Graphic

M/D/1 Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/1 Number in the System x Utilization
Factor
Time in the System x Utilization

Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/m Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/1/K Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

M/M/c/K Number in the System x Utilization
Factor
Time in the System x Utilization
Factor
Number in the Queue x Utilization
Factor
Time in the Queue x Utilization
Factor

5 - Module for system dimensioning
based on Erlang B and Erlang C

formulas

This module is composed by tree sub-
modules:

1) Sub-module for dimensioning based on
Erlang B (M/M/c/c queue) formula

2) Sub-module for dimensioning based on
Erlang C (M/M/c queue) formula

3) Sub-module for dimensioning based on a
pre stored table with values for Erlang
B (M/M/c/c queue) formula

5.1) Sub-module for dimensioning based on
Erlang B (M/M/c/c queue) formulas

The Erlang B formula allows to compute the
blocking probability based on the number of servers,
service rate and arrival rate.

A problem occurs when someone wants to
compute the number of servers, service rate or arrival
rate based on a given blocking probability. For
example, a common practical problem is: how many
servers do we need to obtain a blocking probability
under a specific value given the arrival rate and the
service rate supported by each server? This problem
occurs because it is difficult to invert the Erlang B
formula to compute directly the others parameters
based on blocking probability.

A solution to this problem is to compute the
blocking probability for one server, if it not comply,
compute the blocking probability for two servers,
and successively until the blocking probability
comply with the specified.

Given that the Erlang B formula is complex,
without a computer this process is very slow and

subject to errors. Technicians usually have a table for
pre defined values, and then they try to fit the real
problem in the cases of the table. With a computer,
the user can find accurate values and the process
becomes very efficient.

5.1.1) Dimensioning the number of servers:

The program considers initially one server,
computes the blocking probability given the arrival
rate and the service rate (or utilization factor). If the
obtained blocking probability is greater than the
requested, the program makes the same operation for
two servers, and successively, until the computed
blocking probability comply with the requested.

Then, for dimensioning the number of
servers, the user informs the arrival rate, the service
rate (or utilization factor) and the upper limit of the
blocking probability (fig 4).

5.1.2) Dimensioning the arrival rate

This problem is analogous to 5.1.1. In this
case, the user informs the number of servers, service
rate and blocking probability. The user also needs to
inform to the system the arrival rate which will be
considered by the system to initiate to processing and
to incrementing the arrival rate to next attempt.

For dimensioning the arrival rate, the user
informs the server number, the service rate , initial
arrival rate (upper limit), the step and the upper limit
of the blocking probability.

5.1.3) Dimensioning the service rate

This process is analogous to the above
described in 5.1.1.

Figure 3. Example of a graphic generated by QSOLVE

Figure 4. Example of the dimensioning the number of servers

For dimensioning the service rate, the user informs the server number, the arrival rate , initial service
rate (lower limit), the step and the upper limit of the blocking probability.

5.1.4) Dimensioning the utilization factor

This process is analogous to the above described in 5.1.1.
For dimensioning the utilization factor, the user informs the server number, the initial utilization factor

(upper limit), the step and the upper limit of the blocking probability.

5.2) Sub-module for dimensioning based on Erlang C (M/M/c queue) formulas

This process is analogous to presented in 5.1.

5.2.1) Dimensioning the number of servers

For the number of servers dimensioning, the user will inform: arrival rate, service rate and upper limit
of the blocking probability.

5.2.2) Dimensioning the arrival rate

For the arrival rate dimensioning, the user will inform: server number, initial arrival rate (upper limit),
step, service rate and upper limit of the blocking probability.

5.2.3) Dimensioning the service rate

For the service rate dimensioning, the user will inform the server number, the arrival rate , initial
service rate (lower limit), the step and the upper limit of the blocking probability.

5.3) Sub-module for dimensioning based on a pre stored table with values for Erlang B (M/M/c/c
queue)

This module shows a pre stored table [5], with the blocking probabilities for some cases (fig 5).

Figure 5. Erlang B pre stored table

6. Conclusion

In this work, we presented an auxiliary
system to queueing theory teaching, giving a better
notion of the influence of each parameter in the final
result for each kind of queue. The system gives the
results quickly, allowing the user to test values and
to analise the parameter influence.

With QSOLVE, the user can see some
graphics and compare the behavior of different kinds of
queues. The user can also dimension the various
parameters of M/M/c/K and M/M/c queues based on
Erlang B and Erlang C formulas.

Future work includes new graphics,
additional characteristics parameters for each kind of
queue, inclusion of new queues and the development
of simulation modules that will help in the study of
more complex and analytically intractable systems.

References

1) Kleinrock, L.1975. Queueing Systems, Vol. I.
New York: Willey.

2) Kleinrock, L.1975. Queueing Systems, Vol. II.
New York: Willey.

3) Gross, D., and Harris, C. M. 1985. Fundamentals
of Queueing Theory (2nd ed.). New York:Willey

4) Bertsekas, D. P. , and Gallager, R. 1992. Data
Networks (2nd ed), Prentice Hall.

5) Yacoub, M. D. , 1993. Foundations of Mobile
Radio Engineering, CRC Press.

