
A Graphical Teaching Tool for Understanding Two's Complement

CARLOS L. LÜCK

Electrical Engineering Department
University of Southern Maine

Gorham, ME 04038-1088
luck@usm.maine.edu

Abstract
As part of the Electrical Engineering program, students are
typically introduced to Two's Complement algebra and
representation, a method to include negative numbers in the
binary representation of integers that is widely used in
microprocessors and related digital systems. The traditional,
procedural method to generate and evaluate the binary
pattern of negative numbers is often perceived to be non-
intuitive and time-consuming when students perform it by
hand.

A graphical method for the representation of binary
numbers using Two's Complement algebra was presented to
an introductory class on microprocessors with great success.
The method is based on the principle of operation of the
mechanical odometer and is particularly suited for such
tasks as the quick and reliable generation/evaluation of
“small” negative numbers (-1, -2, etc.), detecting typical
microprocessor conditions such as carry and overflow, and
performing the common arithmetic operations of adding,
subtracting, incrementing and decrementing. Two important
educational goals were achieved with this method. First, the
graphical representation allowed the students to grasp the
principles rather than to focus on the process. Second, the
ability to quickly and reliably generate small negative
numbers proved to be a valuable skill for assembly
programming in the laboratory, since small address offsets
are commonplace in branching instructions.

1 Introduction

Not unlike other subjects and concepts in engineering, Two’s
Complement algebra and representation are introduced in
earlier courses and then fully explored later in the program.
That in itself is not a problem. On the contrary, revisiting an
earlier topic helps a student to approach it with a fresh
perspective and solidify the concept. The problem we have
experienced is in the way Two’s Complement is normally
presented.

Two’s Complement is one among a variety of methods
designed to represent negative integers in digital systems. As
such, it is typically introduced in the first digital course of the

Electrical Engineering program, along with logic gates,
boolean algebra, flip-flops and combinatorial logic, to name a
few. Over the years, students have rated this course as one of
the heaviest in the program, not because of the complexity of
the material, but rather due to the volume of content, the
presence of a challenging laboratory component and it being
so early in the program.

Consequently, relatively little time is spent in binary
algebra involving negative numbers, and when it does the
focus is often on the process rather than the concept, simply
because the students are in the context of manipulating
individual bits or short strings of bits. Students learn quickly
that in order to “two’s complement” a number, they must
negate (or flip) each individual bit of the binary string and
then add one to the result. But they often fail to distinguish
between the algebra, the process and the representation, or
worse, carry misconceptions about them. The process itself
brings them no closer to understanding the concept. This
problem is observed later in the program, when the students
take a course on microprocessors, which makes extensive use
of Two’s Complement algebra in its assembly programming.

Having taught microprocessors for several years, I
recognize the problem and this paper reports on my efforts to
address it. The paper discusses an alternative method of
presenting the concept and indicates how students benefit
from this approach.

2 The Concept

Manipulation of binary numbers follows the same rules used
in the manipulation of decimal numbers: to increment a
number with the right-most digit having the highest symbol
(in the decimal case 9), we return it to zero, index the digit
immediately to its left and propagate the process to the left as
needed. The only difference is that binary numbers have 2
symbols instead of 10. When dealing with larger numbers
(thus long and tedious strings of 1’s and 0’s), we often cluster
4 consecutive bits to create the hexadecimal representation

(24 = 16, i.e. 4 bits can represent 16 distinct, sequential
symbols). In hexadecimal, we use 0-9 for the first 10 symbols
and A-F for the remaining 6 symbols in the representation.

FIGURE 1. Unsigned Representation

0000

0111

0100

0011

0001

0110

0010

1111

0101

1101
1100

1110

1010

1000
1001

1011

FE

7
6

5
4
3

2
10

D
C
B

A
9

8

1514131211109876543210

15
14

7
6

5

4

3

2
1

0

13

12

11

10
9

8

But unlike our abstract view of numbers as points on an
infinite straight line, the finite nature of the physical
implementation of numbers in a digital system makes it more
appropriate to conceive the topology of the representation as
circular rather than linear. This characteristic is embedded in
the design of digital systems through a feature referred to as
“end-around,” i.e. when the value of a number has reached its
maximum range, an increment causes it to return to the
minimum value. It is a mechanism analogous to mechanical
counters such as vehicle odometers (those that have not yet
been replaced by digital counters), in which numbers are
marked on the surface of a wheel and a full revolution (or a
full sequence of indexed revolutions in case of multiple
digits) brings it back to zero.

In fact, the mechanical analogy is the very basis for the
graphical representation discussed in this paper. A simple
way to conceive this notion is to take a straight line with a
scale ranging from zero to the maximum number in the
representation and wrap it around the wheel. For instance, in
a 4-bit system, the 16 values are marked on a wheel equally
spaced and in sequence, such that the highest value (15 in
decimal or F in hexadecimal) becomes adjacent to zero.
Incrementing and adding (decrementing and subtracting) are
viewed as navigating along the wheel in the clockwise
(counterclockwise) direction.

Figure 1 illustrates the concept above. Inside the wheel
the binary pattern of each number is depicted, along with its
hexadecimal equivalent. Outside the wheel the decimal
number is shown, product of wrapping the scaled line around
the wheel, starting at zero. Some of the most recent textbooks
in digital logic present the concept of the number wheel,
recognizing its power as an explanation tool [9,10]. This
representation is suitable for all-positive (known as unsigned)
numbers.

Negative numbers are represented by attributing negative
values to half of the available binary patterns. Several
methods are available:

2.1 Sign and Magnitude

The left-most bit represents the sign (0 for positive, 1 for
negative) and the remaining bits represent the magnitude as
in the unsigned case. Figure 2 illustrates the concept, with the
decimal values (the meaning) on the outside and the binary/
hexadecimal values (the representation) on the inside.

This method is easy to be conceived and recognized by
the students, but it has two disadvantages. First, the turning
wheel concept is disrupted since negative numbers grow in
the opposite directions as the positive numbers, making it
harder to design an arithmetic unit to manipulate those
numbers in additions and subtractions. Second, there is the
inconvenience of double representation for the number zero.
Graphically, the conversion from positive to negative (and
vice-versa) can be obtained as the diametrically opposed
pattern on the wheel.

2.2 One’s Complement

The representation of a negative number is obtained by
complementing bit-by-bit the binary pattern of its
corresponding positive number (i.e. the magnitude).

FIGURE 2. Sign and Magnitude Representation

0000

0111

0100

0011

0001

0110

0010

1111

0101

1101

1100

1110

1010

1000
1001

1011

F
E

7
6

5
4
3

2
1

0

D
C
B

A
9

8

-7
-6

7
6

5

4

3

2

1
0

-5

-4

-3

-2

-1
0

FIGURE 3. One’s Complement Representation

As with all other methods of representation, the inverse
process is identical, credit to the binary nature of the
representation. In other words, the positive number is
obtained by “one’s complementing” the negative pattern. The
leftmost bit functions as a flag to differentiate between
positive and negative numbers just like in the Sign and
Magnitude method.

As a result of the procedure, however, the order of the
negative numbers is reversed, making it more suitable for
arithmetic operations in the sense of navigating the wheel as
previously discussed. Yet it still contains the inconvenience
of double representation for the number zero. Whenever there
is a crossing between the positive and the negative sides, the
wheel must be turned one extra position to compensate for
the double zero. Graphically, the conversion from positive to
negative (and vice-versa) can be obtained as a mirror image
about the vertical diameter line (Figure 3).

2.3 N/2 Bias

As a transition to motivate the final solution, it is useful to
analyze the following method. The idea stems from the desire
to establish a natural sequence of numbers from the
minimum value to the maximum value along the wheel, such
that additions and subtractions can be performed irrespective

of the sign of the number. Since there are N=2n numbers on
the wheel and only one zero is to be present, the remaining
patterns for positive and negative numbers total an odd
quantity. We choose to have the positive side one value less
than the negative side to compensate, meaning that the range
of numbers will be from -N/2 to +N/2-1. Furthermore, the
minimum number will match the minimum binary
representation of all-zeros and the maximum number will
match the maximum representation of all-ones.

The principle can be conceived graphically as taking a
straight line with a scale spanning the representation from -
N/2 to +N/2-1 and wrapping it around the wheel, analogous
to the unsigned concept in Figure 1. As a result, the
numerical value in this representation is obtained by
subtracting N/2 from the unsigned binary pattern, thus the
term N/2 Bias. Since the bias is carried equally in every
value, arithmetic operations can be performed exactly as in
the unsigned case, requiring no extra hardware beyond the
simple arithmetic engine used to manipulate unsigned
numbers. Negative numbers make up the lower half of the
representation (identified by the leading bit equal to zero) and
positive numbers take the upper half (leading bit equal to
one), as seen in Figure 4.

 However, this convenience comes at a price. Unlike all
previous methods, positive numbers are represented
differently between the signed and unsigned cases. The final
method aims at fixing this problem.

0000

0111

0100

0011

0001

0110

0010

1111

0101

1101

1100

1110

1010

1000
1001

1011

F
E

7
6

5
4
3

2
1

0

D
C
B

A
9

8

0
-1

7
6

5

4

3

2

1
0

-2

-3

-4

-5

-6
-7

FIGURE 4. N/2 Bias Representation

0000

0111

0100

0011

0001

0110

0010

1111

0101

1101
1100

1110

1010

1000
1001

1011

FE

7
6

5
4
3

2
1

0

D
C
B

A
9

8

76543210-1-2-3-4-5-6-7-8

7
6

-1
-2

-3

-4

-5

-6
-7

-8

5

4

3

2

1
0

2.4 Two’s Complement

Textbooks present this method either procedurally (such as a
bias of one from the one’s complement method to eliminate
the double zero) or as the principle that gives the

representation its name: x + x = 2n, such that x is the

complement of x with respect to 2n and x defines the
representation of the negative of x. Neither approach captures
easily the essence of what makes the method work and
therefore create confusion, and sometimes misconceptions,
in the minds of students. They fail to recognize the
distinction between the process of obtaining the negative of a
number by “two’s complementing” it and the representation
that establishes the numerical value assigned to a binary
pattern.

The graphical approach we are using with great success
to capture the essence of the method is to take the same
desirable sequence from -N/2 to +N/2-1, as in the N/2 Bias
method, and wrap it around the wheel in such a way that the
representation of positive numbers will coincide between the
unsigned and the signed cases, as shown in Figure 5.

The approach explores the “end-around” feature to allow
a seamless transition between the positive and the negative
side of the wheel, using the standard concept of navigating
the wheel clockwise for addition and counterclockwise for
subtraction. From the hardware point of view, further
simplification is obtained by treating subtraction as the
special case of addition with the negative of the second term,
readily available by “two’s complementing” it. All those
features combined make two’s complement the method of
choice in current design of microprocessors.

3 The Experience

The presentation of Two’s Complement in the context of the
wheel has resulted in a better understanding of the concept,

reflecting an improved performance in exam questions
involving the manipulation of signed numbers. But in the
microprocessor course, the concept helped in other ways too.

In an introductory course on microprocessors, it is
desirable to base it upon a commercial product that is simple
and inexpensive for the sake of experimentation by the
students and at the same time contains the fundamental
principles and operating features of modern, larger scale
microprocessors used in computer systems. The usual choice
is an 8-bit microprocessor, which is produced by several
manufacturers with similar characteristics. The one adopted
in our program is the Motorola 6800 series.

Since numbers are 8 bits wide and 28 = 256, unsigned
numbers are represented in the 0/255 range and signed
numbers are represented in the -128/+127 range, following
Two’s complement representation. 8-bit patterns can be
captured using 2 hexadecimal symbols, ranging from 00 to
FF. The wheel concept helps conceive the representation and
assists in interpreting the principles of carry and overflow.
Carry occurs as a result of an arithmetic operation that causes
the number to cross the FF-00 mark, or the top of the wheel.
It represents the crossing of the boundary in the unsigned
representation. Overflow, on the other hand, occurs as a result
of an arithmetic operation that causes the number cross the
7F--80 mark, or the bottom of the wheel. It represents the
crossing of the boundary in the signed representation. Figure
6 illustrates the notion.

But perhaps the most significant advantage of the wheel
concept is in the quick and reliable generation and evaluation
of negative numbers of small magnitude. It is obtained by
mentally decrementing the number from zero until the
desired value is reached, which means navigating the wheel
in the counterclockwise direction. For instance, -1 is
represented by FF and -4 is obtained by counting backwards
FF, FE, FD, FC. Thus, the binary representation of -4 is FC.

FIGURE 5. Two’s Complement Representation

0000

0111

0100

0011

0001

0110

0010

1111

0101

1101

1100

1110

1010

1000
1001

1011

F
E

7
6

5
4
3

2
1

0

D
C
B

A
9

8

76543210-1-2-3-4-5-6-7-8

-1
-2

7
6

5

4

3

2

1
0

-3

-4

-5

-6

-7
-8

FIGURE 6. 8-bit Two’s Complement Representation with
Carry and Overflow

The representation FC is naturally obtained with the
traditional method of “two’s complementing” 04 as well, but
students often take longer and lack confidence in the
correctness of the outcome. Speed and confidence are greater
with the help of the wheel.

But why would such a skill be desirable to begin with?
As it turns out, in assembly language programming, notably
in the 6800 architecture, the target of branching instructions
is defined as an offset from the present position. In other
words, the address of the next instruction to be executed in
the case of a branch is obtained by adding the given offset to
the current location (program counter). Typically, branching
instructions are local and associated with small loops, such as
adding vector elements or looping with countdown to
produce a time delay. Consequently, the offset is often a
positive number (for branching forward) or a negative
number (for branching backwards) with a small magnitude.
In the laboratory, students use the wheel concept to quickly
assemble and disassemble programs that contain branching
instructions, by mentally applying the procedure described in
the previous paragraph.

4 Conclusion

In a world in which principles are becoming increasingly
transparent to the students with access to sophisticated tools
and software, it is important that concepts be presented with
an ever increasing focus on the meaning rather than the
process for learning to be more effective.

Assembly language programming as a skill is becoming
nearly obsolete, credit to powerful compilers and smart
assemblers that hide the details of the code generation. On
the other hand, logic gates are not just the link from the
hardware of electronic circuits to the abstraction of boolean
algebra, but are also heavily involved in the design of digital
systems, connecting the various subsystems in a computer,
for example. Therefore, the two extremes of gate level and
processor level are used in conjunction during system design.
Two’s Complement is caught in the middle and there is a risk
that it will be relegated to a level of detail hidden by the
programming software tools. However, since it is at the core
of how microprocessors manipulate binary numbers, a good
understanding of microprocessors can not be attained without
mastering this concept.

In this paper, a method is presented to explain the
mechanism behind Two’s Complement algebra, without
having to focus on the procedure for generating negative
numbers. Over time, the details of the process (and there are
many which have not been addressed in this paper for the
sake of brevity) will fade, as the student moves on to different
areas, but hopefully the concept of the wheel will help to
keep Two’s Complement as one of the key features bridging
the gap between the transistor logic and the user level view of
a computer.

References

1. Zvi Kohavi, Switching and Finite Automata Theory,
McGraw-Hill, 2nd Edition, 1978.

2. Fredrick Hill and Gerald Peterson, Introduction to
Switching Theory & Logical Design, John Wiley, 3rd
Edition, 1981.

3. Joseph Cavanagh, Digital Computer Arithmetic,
McGraw-Hill, 1984.

4. Frederick F. Driscoll, Introduction to 6800/68000
Microprocessors, Delmar, 1987.

5. John P. Hayes, Computer Architecture and Organization,
2nd Edition, 1988.

6. Barry B. Brey, Microprocessors and Peripherals,
Merrill, 2nd Edition, 1988.

7. Jack Quinn, The 6800 Microprocessor, Merrill, 1990.

8. John Uffenbeck, Microcomputers and Microprocessors,
Prentice Hall, 2nd Edition, 1991.

9. Randy H. Katz, Contemporary Logic Design, Benjamin/
Cummings, 1994.

10. John F. Wakerly, Digital Design: Principles and
Practices, Prentice-Hall, 2nd Edition, 1994.

-125
126127

7C
7D7E7F

03
020100

83
828180

FC
FD

FEFF-4
-3

-2 -1

3
2

10

-126-127-128

124
125

Carry

Overflow

