
Requirements for Real-Time Laboratory Experimentation
Over the Internet

Ch. Salzmann1, H. A. Latchman1, D. Gillet2, and O. D. Crisalle3

1Electrical and Computer Engineering
Department

3Chemical Engineering Department
University of Florida

Gainesville, Florida 32611-6005 USA

2Institut d'Automatique
École Polytechnique Fédérale de

Lausanne
(Swiss Federal Institute of Technology)

CH-1015 Lausanne Switzerland

Abstract A prototype system based on an inverted
pendulum is used to study the Quality of Service and
discuss requirements of remote-experimentation systems
utilized for carrying out control engineering experiments
over the Internet. This class of applications involves
the transmission over the network of a variety of data
types with their own peculiar Quality of Service
requirement. These data types include video and audio
images from the process environment, signal traces
related to the acquired measurements, control
instructions sent to the process actuators, and other
information concerning the states of the process. The
set up includes a physical system (an inverted pendulum)
as well as a local server fitted with a video camera, data
acquisition boards, and network connectivity that
permits interactions with remotely located clients. The
paper discusses relevant issues of the design, and
presents a paradigm for operation based on a client-server
configuration and a standard/master-client mode of
service. The information streams involved in the
process are classified in four groups of different
transmission priorities, namely, a parameter stream, a
data stream, an administrative stream, and an audio/video
stream. The paper analyzes the performance and
requirements of the system based on the results of
transatlantic tests. The results of the analysis show that
real-time remote-control experimentation over the
Internet is in fact a new kind of network application
featuring its own requirements that are different from
those of related technologies used for video-
conferencing/broadcasting. In order to overcome the
current lack of predictability of the Internet, the final
section of the paper suggests improvements such as
adapting the priority of the different streams to the
Internet bandwidth and to the user’s needs.

1. Introduction

The Internet and modern multimedia tools make it
possible for students to access a university lecture from
remote locations such as the home of the workplace. In
traditional engineering classes, concepts taught through

lectures are often reinforced by practical experimentation
carried out in laboratory sessions that are attended by the
students at the physical site of the facilities. A new
paradigm to make the experimental activities available
to remotely located students has been developed at the
Swiss Federal Institute of Technology in Lausanne,
Switzerland, and tested within the LAN environment.
An extension of the set-up has now been introduced to
reach more distant locations, allowing the sharing of the
laboratory facilities with remote institutions.

The development of remote-experimentation
facilities is motivated by the fact that presently, as never
before, the demand for access to laboratory facilities [1]
is growing rapidly in all engineering colleges. At the
same time the number of students is increasing while
the allocated laboratory resources do not keep up with
the pace. Being able to make the laboratory
infrastructure accessible as virtual laboratories, available
24 hours a day and 7 days a week, go a long way
towards addressing these difficulties, and would also
contribute to lowering the costs of operating the
laboratory in the long term. This increased availability
would be obtained by allowing students to access the
laboratory facilities via modem from home, or from
other points of network access, such as computers
available at different campus locations [2]. Furthermore,
availability of such facilities would enable participation
in the laboratory experiences by students who are
remotely located, such as practicing engineers who
would participate using computers located at the site of
their employers or at their own homes.

This paper describes a remote-experimentation set
up used for carrying out laboratory exercises in control
engineering, and quantifies observations gathered from
transatlantic experiments between the Swiss Federal
Institute of Technology in Lausanne, Switzerland, and
the University of Florida in Gainesville, Florida.
Section 2 presents an overview of the systems used in
the laboratories of the Institute d'Automatique of the
Swiss Federal Institute of Technology to support
distance experimentation, and describes the basic
components of the system. Section 3 addresses basic

issues that are of importance to the effective design of a
remote experimentation system. Section 4 describes the
operational paradigm which has been developed,
including the client-server configuration, the
management of requests placed by clients, the
classification of the information streams transmitted, the
relative hierarchy of the processes involved as well as
other relevant requirements. Section 5 presents a
contrasting discussion between the requirements of real-
time experimentation and conventional
videoconferencing/broadcasting systems. Finally,
Section 6 discusses some solutions for optimizing the
use of the available bandwidth. Final remarks are given
in Section 7.

2. Overview of the Remote-
Experimentation Set Up

This section describes typical processes used for remote
laboratory experiments, and discusses the basic
components of a prototype set-up.

2 . 1 . Typical processes used for remote
laboratory experimentation

Many mechatronic systems— i.e. , those that combine
electrical and mechanical parts— used in a control
engineering laboratory are well suited for remote
experimentation. They are attractive to the students
because they often yield responses that are easy to
identify visually. Furthermore, experimentation can
typically be conducted in a reasonable amount of time.
For example, a complete laboratory experiment could
take between one and two hours of work, during which
period the student carries out modeling and design
studies, including shorter periods (say, 5 to 15 minutes)
of interaction in real-time mode with the experiment for
measurement and control purposes. This paper focuses
on an experiment based on an inverted pendulum
available at the Swiss Federal Institute of Technology.
For contextual reference, we note that two other
systems, namely an helicopter and an electrical drive [3],
are also accessible via the Internet.

STOP

STOP

STOP

 AD/DA

 Remote Local

 Clients

Video Camera

Microphone

Physical process

 Server

Figure 1. A physical system (inverted pendulum)
communicates with a local server via AD/DA cards, and
a network connection gives access to multiple remote
clients.

2 . 2 . Basic components of the remote-
experimentation system

The configuration of the remote-experimentation system
is shown in Figure 1, where the pendulum system is
shown along with the DA/DA cards that connect it to a
local server. The server in turn displays all relevant
signals to a number of remote clients that access the
local systems via the Internet. The server also receives
commands from selected remote clients, and implements
the commands locally on the physical system. The
server and the computer platforms for the clients have
identical display screens, thus giving the remote users
the opportunity to interact with the physical system in a
fashion analogous to the way local users do. The
network transmits input and output data streams as well
as audio and video information.

The user can interact in real-time with the
experiment through a graphical user interface (GUI) built
using the LabVIEW graphical programming language
[4]. This interface (Figure 2) has been designed to be the
same for a local or a remote experimentation. It is
composed of an oscilloscope window where the
measurements done on the real process (position, angle,
etc.) are displayed. Four sliders represent the parameters
provided by the user to the controller. Local users have
the benefit of being able to introduce perturbations by
making physical contact with the pendulum; for
example, by touching the moving arm. The “hand”
button shown in Figure 1 is used to introduce a
perturbation via a software command, a feature of
particular utility when the users perform remote
experimentation. In the inverted pendulum case, the
server simulates a perturbation by adding an error to the
angle measurement. Less important information such as
the sampling period or the connection states are
accessible through an auxiliary window.

3. Issues of relevance to the design

An effective remote experimentation setup must satisfy
a number of requirements. In particular, the user needs
to feel like he/she is physically located next to the real
experiment. During local experimentation the user can
use the senses of vision and hearing to perceive the
effect of his actions on the control system. Under a
remote experimentation mode, this requirement can be
addressed by providing audio and video feedback
information in addition to the information given to the
remote computer through the GUI. Obviously, such
feedback needs to be given in a reasonable amount of
time, minimizing the misleading (and most likely also
annoying) effects of signal-transport delays. For
example, a remote user may not accept as real-time a
signal that arrives 30 seconds after an action is taken
when in fact the local response is achieved in fractions
of a second. Consequently, fast system responsiveness
is a key goal in all developments for remote real-time
control. As may be expected, ideal instantaneous

responses are not possible. In our experience, 2 to 5
seconds of response time have proven to be adequate
values for transatlantic experiments.

 A second issue of importance is to design the
overall system in a highly modular fashion. For
example, our prototypes consist of three basic modules
(Figure 3), namely (1) a real-time module which is
responsible for executing local control actuation on the
real system, (2) a GUI module that displays data and that
manages the user's communication with the real system,
and (3) a network module that manages all the Internet
transactions. This modularity permits quick and bug-
free reconfigurations of the same software to address
different needs. For example, taking the GUI and the
real-time modules one can build a local set-up. A
network server might not need a GUI, since in this case
only the real-time and the network modules would be
needed. Finally, a network client only needs the GUI and
the network components.

Figure 2. Graphical user interface that allows the user to interact with an
inverted-pendulum experiment in real time. The "hand” icon is used to
introduce a perturbation.

A third issue of relevance is the addition of the
capability for carrying out simulation studies, where the
response to all user actions are produced by a software
representation of the physical process rather than by the
process itself. This allows the user to evaluate different
operational scenarios before attempting the real

experimentation. Note that in some complicated
systems the simulation of the physical process might be
difficult. Skeptics might argue that the whole idea of a
laboratory experience is to work with the real process,
and hence there should be no emphasis placed on
simulation work. We argue later that in some cases
simulation capabilities can be of significant value.

STOP

AD/DA

Real-Time

GUI

Network

1

2

3

Figure 3. The three basic components of the design:
(1) real-time, (2) GUI, and (3) network modules.

3 . 1 . Brief description of the three basic
modules

The three basic modules shown in Figure 3 have specific
functionalities and are responsible for different security
processes that ensure the robustness of the set up.

3.1.1. The real-time module

The real-time module allows the control of the real
process from a computer via AD/DA boards that capture
measurement signals and issue command signals. All
control actions are handled by algorithms that run on the
computer’s main processor. Real-time control is
achieved with the assistance of a Real-Time Kernel [5]
developed at the Swiss Federal Institute of Technology.
The control algorithms are written in C or as S-
functions in the format of the Matlab/Simulink software
suite [6], and are executed by the real-time kernel. This
module must include low-level security procedures that
prevent the user or the algorithms from carrying out
either inadvertent or deliberate actions that might damage
the physical equipment. When such procedures are
activated, the real process is reset to a known safe state.

3.1.2. The GUI module

The GUI module (Figure 2) performs a display function,
allowing the user to follow the time evolution of all
signals of relevance to the experiment, such as the
internal states of the controller, for example. In
addition, through the GUI the user is allowed to also
modify the parameters of the controller, as well as other
adjustable characteristics of the experiment, such as the
sampling period. Higher-level of security precautions are
handled at the level of the GUI module. For example,
the GUI may prevent the user from selecting physically
unrealizable parameters (such as a negative sampling
time), etc. The graphical user interface is based on

LabVIEW. A special Real-Time Framework [5] has been
developed on the Macintosh platform to ease the
development of integrated real-time controllers.

3.1.2. The network module

Finally, the network module allows the program to
communicate with other computers distributed in
different physical locations. This module also takes care
of security issues regarding network management, such
as preventing unauthorized access and scheduling access
in order to avoid conflicts.

4. Operation of the Remote
Experimentation System

4.1. Client-server configuration

Two different kinds of software entities are involved in
the communication process, namely, a server and its
clients (Figure 1). The server is the local machine
connected to the experiment. The server runs the
algorithm used to control the experiment in real time.
Although not strictly necessary, it may be convenient to
use a server GUI similar to that of the clients; this is
particularly useful if the server is sometimes used for
local experimentation. A digital camera focused on the
physical experiment and a microphone are connected to
the server to respectively generate video and audio
signals that are transmitted over the network.

The client software runs on the remote machines.
Its main components are a network module and a GUI
module. Each client can adopt two modes of operation,
namely, a standard client or a master client mode, as
described in the following section.

4.2. Managing client requests and assigning
a master mode

The typical operation of the system is through point-to-
point sessions that progress according to a hierarchy of
client requests. In this approach the server is connected
uninterruptedly to the physical experiment 24 hours per
day, waiting for clients to request access. If there is no
client connected, the server might, if appropriate, stop or
put the real process in an idle state to save energy.

When a user wants to perform a new experiment
(i.e., testing new parameters) from a remote location,
he/she launches the client software and requests a
connection to the server. The server allows the
connection if the user has the appropriate permission and
if the maximum number of connected clients is not
exceeded. The user first logs in as a standard client, a
mode that allows the observation of the experiment but
does not allow issuing any commands to the physical

system. In this mode the user receives audio, video, and
data streams from the server.

The user can then place a request to the server for a
connection as a master client, a mode that permits
issuing commands that are accepted by the server as
legitimate manipulations on the physical process. If the
user has appropriate permission to become a master
client, the request will be placed in a queue, and the user
will remain in the standard client mode waiting for the
request to be approved by the server. The server assigns
the status of master client for a pre-defined period of
time to the client on top of the master-client request
queue. Only one client at the time can have the status
of master client.

The master client may introduce manipulations to
the local system, such as modifying the parameters of
the controllers, and then observe their effects. At any
time the user can elect to quit from the master mode and
return to the standard mode, surrendering control of the
experiment. The server forces the transition to the
observer mode whenever the pre-assigned connect time
expires.

In addition to the point-to-point mode, it is also
possible to operate the system in a multi-clients session
where the master client is the instructor for the class
who carries out a demonstration that can be
simultaneously observed by all remote and local students
participating in the class.

4.3. Classes of information streams

Different kinds of information are exchanged between the
server and the clients according to four different classes,
namely, (i) the parameter stream, (ii) the data stream,
(iii) the administrative stream, and (iv) the audio/video
stream. These streams must share the available
bandwidth (which in turn might be different for each
client). A comparative summary of the characteristics of
all four streams is given in Table 1.

4.3.1. The parameter stream

The parameter stream consists of control packets sent by
the master client to the server. This stream holds the
highest priority. In our inverted-pendulum prototype the
parameters are the four gains of the state controller, the
sampling period, and the state of the “hand” button used
to introduce perturbations (see Figure 2). These values
need to be transmitted with a very high priority in order

to assure the best possible responsiveness. This is quite
easy to achieve since the amount of data transmitted is
normally very small. For example for a PID
(proportional-integral-derivative) controller, the data
required may consist of only three values, namely the
values of the P, I, and D constants. A packet is
exchanged every time the user changes one of these three
parameters. Since the parameter stream provides
information that directly manipulates the physical
system, the data transmission must be highly reliable.
Consequently, additional computational requirements
may be imposed by the need of encrypting and/or error
control encoding the values transmitted to avoid
deliberate or inadvertent corruption of the data during the
transmission phase.

4.3.2. The data stream

The data stream consists of all signals of the physical
process which are measured, such as outputs, set-points,
inputs and computed internal values of the controller, for
example the error between the set-points and the actual
position. This stream flows exclusively from the server
to the clients and has a priority just below the
parameter-stream priority. All values are sent in records
consisting of n measured values for each of the measured
signals plus the internal values of the controller. The
size of the data to be transmitted depends on the amount
of data the process generates, and needs to be adapted to
the available bandwidth. Solutions such as compression
or decimation can be used if the amount of data produced
by the process does not match the available bandwidth.
The data stream is broadcast by the server to the clients.
In this process, packets can be lost or may arrive out-of-
order. A buffer can partially solve this problem and
smooth the stream of data. The buffering time must be
small in order not to increase the latency of the entire
process. Another solution is to reconstruct locally the
data using a real-time simulation that makes use of a
model of the physical system. The model could feature
the use of parameters that are constantly re-identified,
updated, and broadcast by the server. In this case it is
important to alert the user whenever simulated data is
generated. The integrity in time of the data stream has
only to be guaranteed when a data history is requested by
the user (for playback or off-line analysis purposes). For
live interaction, this is not quite as critical.

Table 1. Characteristics of the four types of information streams used in real-time remote experimentation.

Stream Direction

Priori
ty

Bandw
idth

Size Encry
ption

Packet
Drop

parameter client → server highest low small yes not allowed

data client ← server high high large no allowed

audio/video client ← server medium high largest no allowed

administrative client ↔ server lowest low smallest yes not allowed

As an example of the size of a record in the data
stream, consider a situation where the controller works
with a 10 millisecond sampling period and there is a
circular buffer on the server side which can hold 500
points (equivalent to 5 seconds of data). There are four
values measured, and each measurement is stored in the
form of short (4-byte) records. If the server sends new
measured data every 2 seconds, then the packet will
consists of 1600 bytes (i.e. 200 points x 4 values x 4
bytes).

4.3.3. The administrative stream

The administrative stream is mainly used at the
beginning of the exchanges between a client and the
server. It is also used when a standard client requests to
become a master client, and vice-versa. Typical
information exchanged in this stream are the username
and the password; hence this stream needs to be
encrypted. This data exchange goes both ways between
the client to the server. The information exchanged is
very small in size and has the lowest priority.

4.3.4. The audio/video stream

Finally, the audio/video (A/V) stream is broadcast from
the server to the clients. This stream is analogous to
the data stream, but it holds lower priority. The A/V
stream demands the most bandwidth for timely and
accurate transmission; however, in the configuration
proposed it actually uses only residual bandwidth due to
its lower priority. This is a key difference between the
proposed paradigm for remote real-time control and the
usual video conferencing/broadcasting solutions. The
A/V information is important to the remote user since it

provides a facility for "seeing" and "hearing" the effects
of all manipulations. Clearly, better quality of the A/V
transmission leads to a more satisfactory experience for
the remote user of the virtual laboratory.

Some of the solutions used for the data stream can
be applied to lower the bandwidth required for the A/V
stream. No real distinctions are made between the audio
and video part of the stream even though in our
prototypes the need for the video feedback is obvious
while the need for the sound feedback is more dependent
to the experiment. One particular case is the example of
an electrical drive set-up that produces an audible
vibration if the parameters are not adequately chosen. In
this case the audio signal is very important because the
video image would not reveal the problem due to the
small displacements of the drive that are ocuring. For
our other prototype systems the sound does not provide
useful information and can be switched off.

4.4. Hierarchy and speed requirements

The four different streams needed for remote
experimentation have different transmission priorities.
The amount of data for each stream varies from a few
bits per second for the parameter stream to the full
bandwidth for the A/V stream. Prioritization of the
transmission is necessary to guarantee that the most
crucial information is transmitted in a timely fashion.
The parameter stream has the highest priority since it
contains critical information concerning parameter
modifications and other adjustments that the clients
make on the physical system. A parameter modification
in the client interface is sent to the server via the
parameter stream and its effect is sent back to the client
via the data stream. Hence, the data stream, which
acknowledges all modifications and reveals their effects,

receives the second-highest priority.

 The cumulative round-trip time in this parameter-
data exchange is the sum of the transmission times for
each two streams. Typically, the time for the server to
process the parameter adjustments can be neglected.
Naturally the cumulative time in the exchange should be
as small as possible. Our experience shows that user
acceptance is very good when the cumulative time
ranges from 1 to 2 seconds. When the cumulative time
exceeds 5 seconds the user needs to adapt to the delay and
the interactivity decreases considerably. When more than
10 seconds are needed to see the effects of a parameter
modification, the user tends to resends the parameter
modification because he/she did not get a visible
acknowledgment. Most of the time this leads to an
unwanted cycle in the user/remote-process loop, and
makes the remote experimentation impractical. In order
to partially overcome this limitation, visual information
in the GUI can monitor and display the state of the
parameter transmission. When such a delay is present,
the whole process should be switched to a batch mode
where the user sends the operation to be performed to the
server and watches the result in a delayed time. While
this can no longer be considered real-time remote
experimentation it certainly provides a workable
alternative for Internet access to physical facilities.
Indeed, there are strong parallels in this regard with
packet telephony and packet video services where
network latency is sensed periodically and the length of
playback buffers is adjusted to facilitate smooth replay.

The A/V stream has the third-highest priority,
since the information transmitted by this stream is to
some extent redundant to the data stream. The A/V
stream serves to give an added sensorial experience to the
activity; hence, its role is typically less crucial. The
data and the video stream should be synchronous. If the
video frame rate drops the user will need to adjust to the
difference between the video frame and the displayed
measure.

4.5. Other requirements

It is desirable that the remote experimentation system
should be available 24 hours a day and should require
minimal local maintenance. That means the process
should be able to go back to a known safe state— for
example return the pendulum to the center of the track—
immediately after an undesirable state or a dangerous
situation is identified. Such undesirable situations may
occur due to a number of reasons, including a user
action, the selection of wrong parameters, a network
problem or a loss of connection, etc. Precautions should
be taken so that the physical system is protected from
damage in all contingencies.

On the other hand, the precautionary procedures
should allow the user to operate sufficiently close to
undesirable states so that he/she can learn from the
experience. For example, specifying a large gain in the
controller that adjusts the arm position will cause the
arm to develop position oscillations. This will
progressively move the arm to one end of the track
where it will activate a built-in position sensor that
disconnects the controller and safely reposition the
pendulum away from the end of the track. Of course,
the precautionary procedures should be robust enough to
guarantee recovery from unwanted states, such as when
the user specifies exceedingly large controller gains.

The user in a remote location should also be able
to perturb the physical process in order to evaluate the
ability of a set of control parameters to reject the effect
of the induced perturbation. For example, in the case of
a mechanical system, a brake could be used to change
the acceleration of the process. A mechanism for
performing such perturbations must be integrated in the
software and made available to the remote user. In the
case of our inverted pendulum prototype, when the user
selects a perturbation box featuring the drawing of a
hand (see Figure 2), an arbitrary bias is temporarily
added to the signal sent to the controller, hence
effectively inducing a large step-change type of
disturbance on the arm position.

5. Remote Experimentation vs.
Videoconferencing/Broadcasting

A growing collection of software is now available to
transmit or broadcast audio and video through the
Internet. One may argue that video
broadcasting/conferencing is similar to the remote
experimentation paradigm, and indeed, this analogy does
hold in the sense that both send audio and video images.
Furthermore, the data stream (measurements) can
conceivably be interpreted as audio or video data.
However, there are significant differences.

The main difference between video conferencing
and real-time remote experimentation lies in the fact that
in the latter the emphasis is on transmitting and
receiving the most recent data, even if this is done at the
expense of discarding older or out-of-order data. In
contrast, video conferencing software tries to send all the
data, recent and older, without any perceivable losses
from the user’s point of view. Consequently, if
possible, no information is dropped, and buffer sizes are
increased in order to smooth the transmission. Note that
for real-time control buffers should be avoided as much
as possible in real-time remote experimentation.

The original version of our system used a

commercial off-the-shelf software [6] to transmit audio
and video signals. This solution gave acceptable
delays— approximately one to four seconds— for
experimentation conducted within the local university
LAN. Unfortunately the performance became
unacceptable for transatlantic experiments because the
delays became significantly greater and were highly
unpredictable. Since in this case the stream was not
adaptively managed by the server, it was not possible to
synchronize the A/V stream with the data stream and
manage their relative priorities. This problem is more
important than transmission delays because the user may
be misled about the actual state of the process and may
not be able to determine which information to trust.

Another difference lies in the fact that in video-
conferencing/broadcasting preference is given to the
audio over the video since the human ear is very
sensitive to the continuity of the sound. Experiences
confirm that interruptions of the sound stream, even for
short periods of time, are disturbing for the user. In
contrast, the opposite is true for the vision since the eye
can easily adapt to "jerky" images. However, with some
exceptions, in remote experimentation the video stream
is often more important than the audio stream because
the visual information plays a larger role in helping the
user to participate in the experiment with sensory
information.

Most video conferencing/broadcasting software
tend to increase the buffer at the reception end in order to
smooth the transmission. Increasing buffers means
adding delays which does the opposite of what the
remote experimentation tries to do. In the later case older
(out of order) information is dropped if newer
information is available. However, the removal of
buffers has its drawbacks. For example, buffers are
needed for compression, especially for video signals
where more than one video frame is required by high
compression-rate algorithms. Video compression may
be in some cases unavoidable, depending on the size and
the number of colors of the image to be transmitted.
Typical compression schemes do not send any data if the
image does not change between two consecutive frames.
Naturally, when the image changes rapidly the
compression scheme delivers a large amount of data. By
lowering the frame rate one can reduce the size of the
transmitted data, but this introduces some drawbacks.
Lets take the example of a frame rate originally set at 10
frames per second which is to be reduced to 1 frame per
second. If the codec (coder-decoder) needs the 3 last
images to perform the compression, it will take about
1/3rd of a second in the former case and 3 seconds in the
latter case. Hence, the compression time increases
proportionally to the compression ratio.

6. Optimizing the Use of the Available
Bandwidth

In order to use the available bandwidth efficiently the
transmission rate of the different streams needs to be
adjusted based on the respective stream priorities.
Different techniques can be used to lower the required
data rate to make better use of the available bandwidth.
The first technique is data compression, but it involves a
trade-off because of the additional delay introduced
through the compression and decompression operations.
This delay should be kept much smaller than the
transmission delay.

Since the A/V stream requires the most bandwidth
great attention should be taken to manage it carefully.
Video conferencing/broadcasting offers a compression
rate of up to 50:1; however, such a ratio can only be
achieved when the compression is done in both the space
and time dimensions. These solutions expect a stream as
continuous as possible, which might not be the case in
remote experimentation.

Another problem arises when clients are not on the
same network. For example, some might be on the
local LAN while others may be connected from home
using dial-up line. The server needs to adapt to these
different bandwidth requirements. One solution for the
video stream is for the server to layer the image and send
it at different resolutions [7]. When a low bandwidth is
available the client would only use a low-resolution
image. When more bandwidth is available the client
would use the low-resolution image and also the higher
layer image.

Data decimation, where only one sample over n
samples is transmitted, can also be used to lower the
bandwidth required. The intermediate steps can be
reconstructed on the client end where interpolation or a
real-time simulation can be used to regenerate the
missing measurements. However, if two measures are
too distant in time the reconstruction can miss fast
phenomenon such as high-frequency oscillations.

A virtual-reality model can also be used as a
replacement of the video signal. In this case the client
software animates a graphical representation of the
physical process using regularly updated coordinates
provided by the server via the data stream. Another
concept called phantom process [8] uses the local
simulation to directly reflect the effect of the user
actions (i.e. , parameter modification) without waiting
for the server to send the information back. At the
client's end the user sees two windows: one free of delay
but showing the results of the phantom-process
simulation, and one with a transmission delay but
showing the image of the physical process. This

technique is used in robotics applications where delays
due to distance cannot be avoided. Phantom-process
schemes often require the use of some kind of
mechanism, such as artificial intelligence schemes, to
deal with unmeasured and/or unknown events that may
be missed by the base model.

7. Conclusions

While experiments and measurements are continuing,
our initial findings confirm that remote-control
experiments over the Internet are feasible for long-
distance applications, such as transatlantic
communications, via a paradigm that involves a client-
server structure. The requirements of these systems are
significantly different from those of conventional
broadcasting or videoconferencing systems particularly
due to the enhanced emphasis given to the successful
transmission of recent data and the possible discarding of
older data. Experience shows that multiple aspects must
be taken into consideration to obtain adequate
performance, including a system for prioritizing
information streams and the utilization of appropriate
data compression mechanisms. The interested reader may
test real-time remote experimentation by accessing the
Telepresence Web Server (http://iawww.epfl.ch) at the
Swiss Federal Institute of Technology.

Acknowledgments

The first and third authors gratefully acknowledge
support received from the Fonds National Suisse under
grant number SPP-ICS 5003-045347. The fourth
author gratefully acknowledges support received from the
National Science Foundation under grant number
CTS 9502936.

References

[1] Gillet D., R. Longchamp, and D. Bonvin,
“Integrated Workbench for Laboratory Projects in
Automatic

Control.” Int. Conf. on Computer Aided Learning
and Instruction in Science and Engineering,
Lausanne, Switzerland, September 1991.

[2] Gillet D., C. Salzmann, R. Longchamp, and D.
Bonvin, "Telepresence: an Opportunity to
Develop Real-World Experimentation in
Education". European Control Conference,
Brussels, July 1997.

[3] Access the electrical-drive experiment at
http://iawww2.epfl.ch/drive and the Helicopter
experiment at http://iawww2.epfl.ch/toycopter.

[4] National Instruments, Austin, TX.

[5] Salzmann C., D. Gillet, R. Longchamp, and D.
Bonvin, “Framework for Fast Real-Time
Applications in Automatic Control Education”.
IFAC Symposium on Advances in Control
Education, Istanbul, July 1997.

[6] Connectix Videophone, Connectix Corporation,
San Mateo, CA

[7] Vetterli M., Jacobson V., and S. McCanne,
“Low-Complexity Coding for Receiver-Driven
Layered Multicast.” Technical Report
SSC/1997/001.

[8] Kevin J. Brady, Timed-Delayed Control of
Telerobotic Manipulators. Ph.D. Thesis,
Washington University, August 1997.

