
A New Perspective for Entry-level Computer Courses

Roberto Ierusalimschy

Departamento de Inform�atica, PUC-Rio

22453-900, Rio de Janeiro, Brazil

roberto@inf.puc-rio.br

Abstract { Most entry-level computer courses to-
day have a strong informative (or instructive) nature,
training the student in building small programs or in using
some applications. In this text we argue for a more for-
mative approach that, while keeping the distinctive hands-
on character of this kind of course, emphasizes the basic
concepts underlying programming: abstraction, recursion,
and structuring.

The Past

The introduction of the �rst computer courses in the En-
gineering curriculum, more than thirty years ago, had a
clear goal: To enable the future engineer to write her own
programs for numerical solution of mathematical models.

At that time, computers where clearly divided be-
tween scienti�c machines, with strong arithmetic perfor-
mance, programmed mainly in FORTRAN, and commer-
cial machines, with emphasis on string manipulation, pro-
grammed mainly in COBOL. FORTRAN was the only
language an engineer could possibly use, and the solution
of mathematical models was the only useful task to expect
from a scienti�c computer. Programs at that time were
small for today's standards: A program with a thousand
cards (that is, one thousand lines), which �lled a whole
card box, was considered quite large. In that context, the
stated goal of a computer course could be achieved in one
or two terms. Typical students �nished the courses with a
working knowledge of FORTRAN, and were able to write
useful programs for the speci�c domain of numerical com-
putations.

We do not need to emphasize how much computer
science and computer technology have changed since that
time. Currently, few engineers need to write their own
programs to solve numerical problems; instead, they can
use o�-the-shelf software, such as MatLab [6] (which may
need another kind of programming). Moreover, due to
the growing complexity of programs, user interfaces, and
programming environments, few engineers have the nec-
essary skills to write fair programs in C. A program with
a thousand lines of code is currently considered small.
Moreover, if the program uses a graphical user interface,
the programmer will need to work with object-oriented
programming, call-backs, and other concepts not included
in the basic instructional kit.

On the other hand, most engineers use computers

for many other activities, using many di�erent tools, such
as spreadsheets, text editors, and CAD programs. Com-
puters permeate many o�ce tasks today, and certainly
this spectrum will grow further in the future.

The Present

Although some universities still follow the old format for
their computer courses, most of them have adopted other
syllabuses for their entry-level courses in computer sci-
ence.

One trend has emphasized an overview of Com-
puter Science, to give the student a broad knowledge of
the �eld. An example of this trend is the course SEM117:
Introduction to Computer Science [13], from the Univer-
sity of Birmingham.

Another line has focused in \computer literacy":
Because engineers have to use di�erent tools, they should
be trained in the use of those tools. Civil Engineering
at Purdue University adopts this kind of course (CE 293:
Computers and Computer Programming for Civil Engi-
neers [9]) with topics such as WordPerfect, QuattroPro
and AutoCAD.

Finally, many curricula have kept an emphasis in
programming skills, usually adopting a more modern lan-
guage, such as C. For instance, Civil Engineering at MIT
adopts a programming course, in C (1.00: Introduction to
Computers and Engineering Problem Solving [8]), while
Cornell is using Java (COM S 100: Introduction to Com-
puter Programming [4]).

These trends are often mixed. For instance, Rice
University and Yale have one course based both in \hard
programming" (in C or FORTRAN) and a numerical tool,
Matlab (CAAM 210: Introduction to Engineering Com-
putation [10], at Rice U., and 130b: Introduction To
Computing for Engineers and Scientists [14], at Yale).
The University of Birmingham also adopts a mixed ap-
proach, with a programming course in C++ parallel to
the overview course. Civil Engineering at Purdue Uni-
versity also has two courses: Before the computer liter-
acy course, there is an \Introduction to programming in
FORTRAN" (CS 150: Programming I for Engineers and
Scientists).



Overview Courses

Although overview courses are more common in Com-
puter Science curricula, this kind of course sometimes im-
pacts the Engineering curricula, too. A main book in this
line is Brookshear's Computer Science { An Overview :
\For computer science majors and minors in the early
stages of their college careers, many of whom mistakenly
equate programming and computer science, and for stu-
dents of other disciplines who want computer literacy be-
yond the ability to manipulate a particular program or do
a little elementary programming." [2]

This kind of course can be very interesting. It
presents major areas of computer science, giving the stu-
dent a great latitude of knowledge in the �eld. It can also
be useful in breaking myths, so common when the subject
is computers. However, a major pitfall of this approach is
that we lose the hands-on practice. Without application
programs or a real language, there is little to do with a
computer. Moreover, such courses are mainly informative
and necessarily super�cial.

An intriguing point is that few other areas adopt
similar courses. For instance, few Engineering curricula
have an overview course on Civil Engineering, or \Physics
in a Glance". Maybe they should. Nevertheless, indepen-
dently of the adoption of such a course for computing, an
overview should not replace a more technical course, but
at most complement it.

Computer Literacy

Clearly an engineer must be \computer literate" nowa-
days. This is not easy: Not only there is an increasing
number of tools to master, but also each tool is becoming
more and more complex. However, an explicit course on
computer literacy is not a good approach. First, a ba-
sic skill in most tools can be acquired in a few hours, as
long as the student is interested in the �nal results. An
example is supplied by secretaries and clerks, who can
learn the basics of a text-editor or a spreadsheet program
in a short time, assuming the learning will give them a
concrete pro�t; another example is how fast our students
master a new video-game.

Second, more advanced skills on speci�c software
tools are better taught when needed. Most programs use
a metaphor in their user interfaces. If the user does not
understand what the metaphor is about, there is little
hope she will understand the software. For instance, one
of the problems in teaching a freshman how to use an
electronic spreadsheet is that the student does not know
what a spreadsheet is for, in the �rst place. Such a pro-
gram would be better presented in a management course,
for instance. Moreover, only a professional user of a tool
can motivate its more advanced features.

Finally, generic computer literacy courses veil a re-
current problem, that currently many lecturers and col-
leges are computer illiterate, or at least not as uent as
they wish their graduates to be. Computers are perva-
sive, and the training on their use must be, too. It is of

little use to teach a student generic tools, if she has no
incentive or opportunities afterwards to apply these tools.
On the other hand, if all lecturers use, and motivate their
students to use, software tools, and the institution facil-
itates that use with proper support, students should not
need speci�c courses on computer literacy.

Programming

Many engineering curricula have kept the emphasis
on programming in their entry-level computer courses,
changing the language from FORTRAN to Pascal or C,
and more recently, C++ or Java.

At a �rst look, such courses have kept the main
goal of the past: To enable the future engineer to write
her own programs. However, at a closer look, the goals
have changed a lot, frequently without a clear recogni-
tion. This change is due to the change in the concept
of program. As we have discussed, in the past, from an
engineer's point of view, programming focused on a very
narrow domain, with a �xed (and reasonably simple) lan-
guage, FORTRAN; the main data structures were vectors
and matrices, which are built-in in the language; there
were neither fancy user interfaces nor dynamic structures
with pointers. All that has changed, and now it is very
di�cult to form a useful programmer with a one (or two)
semester course.

Currently, most students �nish their computer
courses with a shallow understanding of main program-
ming concepts, such as recursion and abstraction. Be-
cause there is little time, the �rst super�cial aspects of a
language (its syntax) are overemphasized in detriment of
its semantics. Usually, when a student claims to \know"
a language, that means she masters its syntax: brackets,
commas, etc.

A good illustration of the current overemphasis in
syntax is a widespread opinion about Java: \If you know
C, it is easy to learn Java." In fact, C and Java have
similar syntaxes, but the similarities end here. One of the
main concepts in C, pointers, is absent in Java. Other
omissions include header �les, global variables, and static
arrays. By the same token, the main concept of Java, ob-
jects, does not exist in C. Classes, interfaces, inheritance,
packages, exception handling, and other important parts
of Java are also absent in C.

Some courses try to avoid this weight in syntax and
language issues. For instance, Cornell's COM S 100 ex-
plicitly states: \The subject of the course is programming,
not a particular programming language." Nevertheless,
course descriptions seldom include the main concepts in-
volved in programming; generally, they are a list of lan-
guage features (if-then-else, while, array , record , etc).

What Programming is About

Programming is much more than the knowledge of syn-
tactic details of a particular language, or the skill to write
a small program in that language. Programming is much



more than a tool: Programming is an intellectual disci-
pline.

Learning how to program can be an excellent in-
troduction to formal reasoning, since the student must
use a formal language (the programming language), and
has an exacting veri�cation system (the computer). Pro-
gramming also demands a kind of \meta-knowledge". To
program the solution of a problem, the student not only
must know the solution, but she must be able to explain
her solution in precise and simple terms. Computers are
stubborn pupils, doing exactly what we ask them to do.
To teach them, we must be rather good expositors.

Programming explicitly explores some basic math-
ematical concepts, particularly abstraction, structuring ,
and induction. Because programs are easily implemented
and executed, programming gives an unique opportunity
for a student to have lots of hands-on experience with
those concepts.

Abstraction is certainly the single most important
concept in computer science. Building and understand-
ing abstractions are key activities for a programmer, as
well as for users of any application, above the basic levels.
Abstraction is also a key concept to understand comput-
ers, because a computer is a huge pile of abstractions:
transistors abstracted in logic gates, abstracted in logic
circuits, abstracted in computer components, abstracted
in memory, abstracted in binary instructions, abstracted
in assembly language, etc. A typical di�culty students
have with computers is that they try to grasp too many
abstraction levels at the same time.

Unlike other disciplines, programming allows a stu-
dent to manipulate abstractions; when a programmer en-
capsulates a piece of code in an abstraction (function,
procedure, subroutine, etc) and gives it a name, that ab-
straction is now part of her \reality". She can use that
abstraction in other parts of her program without con-
cerns about the details of that code, or how it was imple-
mented. The same can be done with data representations,
resulting in data abstraction. The conscious creation and
manipulation of abstractions give a student not only a
deep understanding of the concept, but a feeling that only
hands-on experience can give.

A programming environment is also an ideal labo-
ratory for structuring. Any reasonable programming lan-
guage allows a student to create several abstractions, and
then to join them to build even more complex structures.
Again, this hands-on experience of managing complexity
is usually di�cult to achieve in other areas. Particularly,
the manipulation of data structures leads to a better com-
prehension of data representation, the concept that all
kinds of information |images, texts, mathematical ex-
pressions, and even computer instructions| can be rep-
resented (or coded) in terms of a small repertoire of basic
data types, such as numbers and arrays.

Finally, recursion puts inductive reasoning to work.
Most courses introduce iteration (loops) before |or in-
stead of| recursion, on the grounds that the former is
simpler. In fact this is true, from a super�cial point of

view: A loop can be explained as a go back to step 1.
However, such understanding is useful only for an infor-
mal analysis of a program; for instance, you cannot prove
anything about a program with it. Worse, when doing
synthesis, instead of analysis, this super�cial understand-
ing of loops gives few clues about how to use them to solve
a particular problem. Recursive de�nitions, on the other
hand, allow easy formal proofs |by induction| and a
�rm approach for programming synthesis, called divide-
and-conquer . Finally, for many non trivial algorithms,
such as quicksort and tree search, a recursive solution is
simpler than an iterative one, even for an informal anal-
ysis.

The Language Paradox

\A most important, but also most elusive,
aspect of any tool is its inuence on the habits
of those who train themselves in its use. If the
tool is a programming language, this inuence is
| whether we like it or not | an inuence on
our thinking habits." [Dijkstra]

More often than not, an engineer uses a particular
language because it is the only one she knows, not because
it is the best language for the task (by the same token, a
teacher biases her students to use only the language she
knows).

An engineer comes in contact with many di�er-
ent languages when using a computer, frequently unaware
that she is dealing with a language at all. Each applica-
tion or domain has its own language: formulae languages
in spreadsheets, macro-languages in text-editors, SQL in
databases, HTML in the Web, etc. The mastery of an
application's language can make the di�erence between
the expert and the mediocre user. Besides that, some
programming languages may become obsolete before the
student's graduation. Currently, many languages rise and
fall in less than ten years. For instance, Pascal, although
created in 1970, only gained momentum in the late sev-
enties with the micro-computers (because it was simple
enough to �t in a memory of 4K), had its glory with
Turbo-Pascal 3.0, circa 1982, and by the early nineties
was almost defunct. C++ as it is known today appeared
in 1989, had a maximum circa 1993, and is already de-
clining, due to Java. FORTRAN is the exception, not the
rule.

Having that in mind, the result seems clear: We
should de-emphasize language. After all, \the subject of
the course is programming, not a particular programming
language." Some people go as far as to suggest to use
no language. Instead, such courses should use pseudo-
language: Natural language (e.g. English) with a pro-
gramming \avor". However, without the use of a real
programming language, such courses lose a lot: Despite
being cumbersome, syntax is an integral part of the game.
Without a real language, there is no hands-on. With-
out a real language, the student cannot grasp the real



meaning of formal : \Relating to or involving the outward
form, structure, relationships, or arrangement of elements
rather than content" [7].

The problem of choosing a language for an entry-
level computer course poses therefore an apparent para-
dox: On one hand, since the emphasis should be on pro-
gramming concepts, the adopted language seems to be
almost irrelevant. On the other hand, the language plays
an essential role in the course. One solution is that we
choose the language not by its intrinsic usefulness, but
for its usefulness in the course.

An excellent option is Lisp/Scheme [3] (Lisp de-
notes a family of languages, since it has no standard.
Scheme is a particular member of that family). Like FOR-
TRAN and COBOL, Lisp is a survivor; it was developed
in 1960, and it is in widespread use today. Scheme is a
small language, with a tiny syntax and a clear semantics.
The main pro of Scheme is its simplicity; most students
acquire a working knowledge of the language in a few
classes. But there are other pros.

Scheme is interactive. Unlike languages such as
C, Pascal or FORTRAN, where a student must use (and
learn) a text-editor to create a program, and then feed the
program to a compiler, in Scheme you can simply type in
expressions, which are immediately executed. Therefore,
students can start using the language in the �rst class.

Scheme has complete data description facilities.
Any value in Scheme (even complex ones, such as arrays
of arrays or lists of arrays) can be directly written into a
program, or printed by the system. Therefore, when you
write a sorting function, for instance, you do not need
to write two other functions only to create the array and
print the result; you just call the function with appropri-
ate data and see the result. Moreover, when we discuss
more complex data structures, such as trees, we have a
concrete way to represent them that a computer also un-
derstands.

Despite its simplicity, Scheme supports most rel-
evant programming concepts, including recursion, itera-
tion, functional abstraction, side-e�ects, arrays, and dy-
namic structures. Some important absences are static
typing and modules, although the latter is not really im-
portant for this level of programming.

Finally, there are several good introductory books
about programming that use Scheme. Among them,
\Structure and Interpretation of Computer Programs" [1]
is already a classic. It is adopted in many Computer
Science curricula, but may be too heavy for a typ-
ical engineering curriculum. Other interesting books
are \The Little Schemer" [12] and \Scheme and the
Art of Programming" [11]. (You can �nd more in-
formation about Scheme as a tool in education at
http://www.cs.rice.edu/~shriram/Scheme/Education/.)

Back to the Present

Many (but far from a majority) Computer Science and
Computer Engineering curricula have already adopted the

ideas presented here (e.g. MIT, Cornell, Princeton, UCB,
UCLA and Yale [5]). However, with the exception of Elec-
trical Engineering courses, the curricula of other engineer-
ing areas (Civil, Mechanical, etc) is mostly unaware of this
trend.

Here at PUC-Rio (the Ponti�cal Catholic Univer-
sity at Rio de Janeiro) we have introduced these ideas in
ICC, the entry-level computer course for all engineering
courses. This experience is still recent, so unfortunately
we do not have much data. Nevertheless, some points
are clear. First, the whole course is hands-on, since the
�rst class. The students start using the computer in the
�rst class, and after the second week are already writing
small programs. Second, the students learn the language
quite fast. After the �rst weeks, there is seldom a ques-
tion about syntax, and the course is completely focused
on programming. Third, we are able to cover many more
programming concepts than before.

Some questions still remain. The main one is
how fast they can adapt to a conventional language,
when needed. Another question concerns the adoption of
Scheme in other courses, such as numerical analysis. On
one hand, the expressiveness of the language could bring
bene�ts to those areas, too. On the other hand, other
languages may o�er better support for speci�c domains,
for instance through better libraries or tools. Moreover,
as we said earlier, many lecturers still have a surprising
resistance to learn new things, such as a new language.

Acknowledgments

I would like to thank Noemi Rodriguez and Carlos Tomei,
for many useful discussions about this subject and sug-
gestions about this paper. This work has been partially
supported by CNPq (the Brazilian Research Council).

References

[1] Harold Abelson and Gerald Jay Sussman. Structure
and Interpretation of Computer Programs. The MIT
Press, 1985.

[2] Glenn Brookshear. Computer Science: An Overview.
Addison-Wesley, 1996.

[3] William Clinger and Jonathan Rees (editors). Re-
vised(4) report on the algorithmic language scheme.
ACM Lisp Pointers, 4, July-September 1991.

[4] Cornell
University. COM S 100: Introduction to Computer
Programming. http://www.cornell.edu/Academic/
Courses97/csen/en248.html

[5] Terry Kaufman. Schools Using Scheme. Schemers
Inc.
http://www.schemers.com/schools.html

[6] MathWorks Inc. MATLAB: The Language of Tech-
nical Computing, March 1998.
http://www.mathworks.com/products/matlab/.



[7] Merriam-Webster. WWWebster Dictionary, 1997.
http://www.m-w.com/dictionary.htm

[8] MIT. 1.00: Introduction to Computers and Engi-
neering Problem Solving.
http://monett.mit.edu/100/home.nsf

[9] Purdue University. CE 293: Computers and Com-
puter Programming for Civil Engineers.
http://www.ecn.purdue.edu/courses/

[10] Rice University. CAAM 210: Introduction to Engi-
neering Computation.
http://www.owlnet.rice.edu/~caam210/

[11] Scheme and the Art of Programming. G. Springer
and D. Friedman. McGraw Hill, 1994.

[12] The Little Schemer. D. Friedman and M. Felleisen.
The MIT Press, 1996.

[13] University of Birmingham. SEM117: Introduction
to Computer Science. http://www.cs.bham.ac.uk/
modules/current/sem117.html

[14] Yale University. 130b: Introduction To Computing
for Engineers and Scientists.
http://www.yale.edu/ycpo/ycps/E-L/engas.html


