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ABSTRACT The complexity of academic activity, the
eminence of the freedom to research and the reverence due
to the authority of knowledge require full autonomy for the
university departments. Above that, although dependent on
central decisions on organization and resources
availability, it is the action of Faculty and students within
the departments that determines the results of the
educational process. For this reason, it is at departmental
level that must be driven the main effort to improve quality
in higher education and the most important virtue of any
academic evaluation system is its power to call attention of
the departments to the importance of quality management
and providing them information that may drive their efforts
in this direction.

This paper presents an approach to access the
productivity of academic departments by combining model
building and parameters estimation, in an iterative manner.
Validation and outliers selection techniques can then be
applied to feed automatic model revision procedures that
will preserve continuity in the evaluation process. We start
with a simple linear approximation to the ideal production
function of each department with coefficients depending on
quality of work explanatory variables. We follow the
evolution of these coefficients estimates along time, as local
observations become available. Departments with extreme
estimated coefficients are taken as object of study aiming to
detect useful innovation or any other cause of its different
observed behavior.

An iterative algorithm for the estimation of the
parameters of the dynamic hierarchical model thus
generated is described here. An approach to combine the
estimates of productivity with respect to each particular
output in a global measurement is also proposed. Examples
of different ways to model the academic activity are,
finally, presented.

INTRODUCTION

Performance evaluation must primarily aim to identify
factors of improvement and to arouse pursuit of such
improvements. In order to reach such goals, it should pay
attention to steady tendencies and structural differences
rather than to final results. We present here a performance

evaluation system based on modeling a production function
with coefficients assumed to vary according to measurable
factors that have to do with work quality, management and
environment aspects. This allows not only to compute
efficiencies on the basis of productivity estimates more
reliable than crude ratios of observed cost and production,
but also to identify systematic sources of variation and to
detect the presence of unknown factors affecting efficiency.

By basing evaluation on fitting and verifying a
statistical model for the production function, we provide
elements to develop analysis on various levels of
complexity. First, we collect data on inputs and outputs and
register the academic relevant variables. After that, we use
these data to produce aggregate measures of production and
to compute estimates of productivity. These estimates are
then used to compare efficiencies on the basis of the causes
of performance variations. Finally, discrepancies between
observed and predicted results are used to select for further
analysis observation units with large adjustment residuals.

The initial choice of relevant variables, the
development of data collecting reliable procedures and the
model check involve all faculty in the quality effort.
Measurement of local technical coefficients and of their
inner relationships helps people in management position to
develop their own efficiency improving and innovation
fostering procedures. Selection of units with worse
adjustment in order to there search for possible effects of
factors left out of the model opens space for different sorts
of benchmarking.

Usually, we can collect data on costs and production of
each department, as well as on factors differently affecting
productivity of its personnel. To such data we can adjust a
hierarchical model where in the first level is a production
function and, at a second level, the technical coefficients of
such production function are themselves explained by a
function whose coefficients can also be estimated. But,
when there is not enough data about factors that might
explain the production coefficients variation, or even when
the number of academic departments is small as much as
the number of available observations on each department,
we may be led to give up identifying individualized local
coefficients and then to compare performances on the basis
of distances from observed productivity ratios to average or
frontier such ratios. Doing so, we implicitly assume that all



variation in costs and final result measurements is due to
differences in efficiency. Since the larger observed
deviations are seldom systematic, this approach results in
fingering as the most efficient or most inefficient the units
with less reliable data. If there are large errors in the
measurements of the units taken as reference, the ratios
obtained by comparison with such extreme points reflect no
efficiency at all.

If we wish to admit that local parameters change with
time, we have only one observation on each observational
unit. But we may compare performances on the basis of
estimated coefficients, even when dealing with such a small
sample on each unit. We may separate in each local
parameter a general component and employ data collected
in all units in its estimation. And the variation left in the
local component may have its evolution through time
modeled in such a way as to satisfactorily reduce the
number of parameters to estimate. We may, for instance,
derive estimates for the parameters variance through time
from the scale of the differences between observations on
different units.

In synthesis, the approach developed here is based on
the hypothesis of academic parameters systematically
varying along the departments and through time. Not only a
production function relating volumes of critical inputs and
outputs but also the dependence of the coefficients of such
function on management and environmental factors is, if
possible, modeled. Periodically, a search for innovations
and new sources of variation is realized in the units with
worst adjustment and drives the model revision. With
feedback expected from the beginning, initial modeling may
be less elaborated, taking in due account that, usually, only
after looking at the first results of model adjustment, even
the most experienced administrators can give their best
contributions to improve modeling.

In the next Section, procedures based on combining
local and external information are developed. Then,
efficiency criteria developed to compare units on the basis
of their productivity estimates are discussed. Finally, models
with different complexity are compared.

ESTIMATION OF PRODUCTION
COEFFICIENTS

  
The model structure used here is centered on a linear
production function relating the volume of output of a few
different products to the global cost involved in producing
them. The coefficients of this production function are
allowed to vary through time and from unit to unit
according to environmental or managerial variables, also
observable. A third set of equations explaining these second
level coefficients may be added and so on.

Formally, this structure may be given, by:

   Observation equation:
Cit = Pitβit + εit,

Cit denoting observed aggregate cost,
Pit denoting the vector of observed values of the outputs

that the model considers,
βit denoting the vector of inverse productivities with

respect to this set of outputs,
εit denoting zero mean random disturbance in cost

measurement in unit i at time t.
   Structural equations:

Ykit = Fkitγkit + ηkit, Ylkit = Flkitδlkit + νlkit, and so on.
Ykit denotes an estimator of βkit, the inverse

productivity in unit i with respect to output k at time t, Fkit

denotes a vector of second level observable explanatory
variables, Ylkit denotes an estimator of the l-th coordinate
γlkit of the vector γkit, the vector of second level technical
coefficients relative to output k, ηkit denotes a zero mean
stochastic disturbance for a second level equation, Flkit

denotes a vector of third level observable explanatory
variables, δlkit denotes one of the vectors of third level
technical coefficients and νlkit denotes one of the third level
zero mean disturbances.

   Mean evolution equation:
ait = Git.mit-1,

for Git known, ait and mit denoting the mean of the prior
and posterior distribution of the vector of coefficients of
last level equations. In many situations, we may simplify
estimation by assuming  all Git identity and even that the
final level coefficients do not depend on the unit i.

   Variance evolution equations:
            σ2

it = k2
it.σ2

it-1, Vit = Jit.Wit-1.Jit’,
for k2

it and Jit known. σ2
it is the variance of the distribu-

tion of ϕit, Vit is a positive definite matrix such that σ2
it.Vit

= Var(θitDt-1, σ2
it), the variance of the prior distribution of

θit, and Wit a positive definite matrix such that σ2
it.Wit =

Var(θitDt, σ2
it),  the variance of the posterior distribution

of  θit, for θit vector of coefficients of one of the structural
equations or of the observational equation and ϕit the
disturbance of the same equation.

If we cannot find observable explanatory variables,
we are forced to take the structural equations out of the
model. But we must not drop the index i from the
observation equation coefficients unless we are willing to
admit identical production equations in all units, case in
which differences on units results are only accidental and
irrelevant to the goal of deriving quality improvement
actions. In this case, of absence of structural equations, the
algorithm has no smoothing stage and all we have to do is
to initialize, possibly with the estimates of the constant
coefficients regression, and, after that, update each unit
productivity estimates separately, anytime a vector of new
observations is available.



By modeling estimates instead of parameters in the
structure equations, we are able to set an independence
structure in the dynamic hierarchical model that permits to
isolate each level conjugation computations and to infer
about the ratios between the disturbances variances.
Assuming independence between all different equations
disturbances and between coefficients and disturbances, and
assuming a normal and inverted gamma distribution for the
coefficients and the variance of the disturbance of each
equation, after starting with known prior mean and variance
for the distribution of θ1 given σ2

1 and known prior mean
and number of degrees of freedom for σ2

1, we can easily
relate parameters of prior and posterior distributions at time
t for the whole set of equations.

This can be done through successive steps of
forecasting and updating. Forecasting follows from simple
multiplication by the matrices G and successive F and use of
the constants k2 to change variance scales.

For the presentation of the updating relations, a little
more notation is needed. Let mit denote the mean of the
posterior distribution of θit, that is mit = E(θitDt, σ2

it), and
let ait = E(θitDt-1, σ2

it), the mean of the prior distribution of
θit. Analogously, let nit and lit be the numbers of degrees of
freedom of the distributions of σ2

it conditional on the
information available at times t and t-1, respectively,
denoted by Dt and Dt-1. Let s2

it = E(σ2
itDt).nit and r2

it =
E(σ2

itDt-1).lit. Finally let eit denote the prediction error
resulting from estimation of θit by ait, that means, eit = Cit -
Pit.ait if θit is the vector of inverse productivities or eit = Yit -
Fit.ait if θit is the vector of coefficients of the structural
equation whose left hand is Yit. The updating relations are
then given by:

Wit = Vit - (1+FitVitFit’)
-1VitFit’FitVit

mit = ait + (1+FitVitFit’)
-1VitFit’eit

sit = rit + (1+FitVitFit’)
-1 eit’eit

nit = lit + 1.
While forecasting goes from the last level to the first,

updating starts from the first level. The coordinates of the
vector of means of the posterior distribution of βit can be
used as the Ykit for the second level equations, the second
level mit used to compute the prediction errors for the third
level updating and so on. Then, each iteration of the
estimation procedure starts with updating the first level
estimates with the means of the posterior distribution of βit
and proceeds with updating until we reach the last level,
where we start using the forecasting relations to smoothen
the vectors of coefficients estimates.

To complete the description of the estimation
algorithm, it rests to show how to initialize it. The means
for the initialization priors may be obtained from
specialists. These means need not be realistic. Wishful
values may be used to impact initial predictions and drive

efforts towards desired goals. The distortions thus induced
will be corrected by the estimation algorithm in a few runs.

When starting analysis, it is seldom available any
information on prior distributions for the variances. Unin-
formative priors, characterized by large variances and small
number of degrees of freedom, can be used in the first run.
Instead of that, we may prefer to initialize with the
assumption of coefficient estimators uncorrelated and with
the same variance of the disturbances. After a few runs,
when the set of explanatory variables to be used will
probably have been changed according to the new
information then received, and the distortion due to the
unaccounted correlation between the outputs in the first
level equation evaluated, we may reinitialize with improved
correlation assumptions.

While using the uncorrelated equal variances
hypothesis, in order to avoid the effects of differences in
measured variances due to scales of measurement, it may be
advisable to standardize all explanatory variables by
equalizing scales. Standardization of all dependent
variables may also help developing patterns for comparison
between different levels residuals.

THE CONCEPT OF AGGREGATE
EFFICIENCY

Once obtained final individual estimates allowing for local
quality standards, it remains the problem of global
comparison of departments with different teaching, research
and service structure. A linear combination of the estimated
technical coefficients will be the best uni-dimensional
productivity measurement, whenever the weights of such
linear combination correctly reflect the importance of each
output. We choose as weights the volumes of output in the
unit whose efficiency is being accessed.

Besides measuring productivity, we must also choose
the standard behavior with respect to which to compare the
measurements. A general formulation for an efficiency
measure is given by the ratio of two linear combinations
with the same weights, given by the volumes of outputs
produced by the evaluated unit, the first of optimal and the
other of local technical coefficients. By this way, local
aggregate productivity will be compared with the most
efficient observable way of producing the same output
attained in the unit under evaluation.

The optimal coefficients may be obtained as the best
linear combination of the estimated coefficients of different
units. The weights in this linear combination must be those
that minimize the cost of producing the outputs Pjio of the
unit io under evaluation, admitted eventual excesses in the
production of particular outputs.

Thus, we have the efficiency measure formally given,
for unit io, by:



Efficiency(io) = inf Σ(λiDi/Dio),
this sum evaluated for i varying along the whole set

of observed units, and the infimum computed among all
possible vectors of contributions λ satisfying Σ(λiPki) ≥ Pkio,
for all k. Here, as before, Pki denotes the volume of output of
the k-th product at the i-th university department.

On the other side, Di is introduced here to denote
the corrected cost for unit i, obtained through the prediction
generated according to the chosen model, and not
necessarily the observed costs.

The distances from predicted to observed costs
should also be examined, in order to look for efficiency
differences due to factors still not taken into account within
the model. But, while these factor are not suitably
measured, we should not intend to derive any efficiency
measure from their effects, specially when mixed with
purely random disturbances. If such factors seem important,
we ought to first identify them through the in loco analysis
of the units where the known factors are less able to explain
the measurements obtained.

The rule for the choice of units for in loco analysis
should be simple and easy to explain. For instance, choose
the two units with higher predicted to observed ratios
among those not selected in the two last years. The analysis
of the units then selected should take into account the
coefficients estimates obtained in the successive model
levels for that unit and also for the whole set. For instance,
explanatory variables previously considered relevant but
excluded from the model adjusted due to low estimates
should there have their measurements carefully checked.
But the main search should be for elements not yet
considered: quality improvements on teaching or
development of new research procedures may explain
positive residuals in the adjustment, as much as simple
waste due to lavishness in the application of resources; on
the other side, negative residuals may be due to loss of
quality as well as to technological advances enhancing
productivity. Substantive improvement in the quality
management will come from measuring these possible
changes and taking them into account in the production
function.

COMPARING DEPARTMENTS OF
VARIOUS SIZES 

In [1], we fit a model to academic production, with only two
first level explanatory variables: Teaching, measured by the
total number of hours of students enrollment in courses, and
Advising, measured by the number of final dissertations
advised. The input variable is the value spent by the
University in paying Faculty. As second level variables,
enter two uncorrelated quality enhancing factors for each of
the first level productivity coefficients.

The teaching coefficient is supposed to increase with
a measure of students satisfaction and a measure of
reliability of the evaluation procedures used by teachers.
The advising coefficient is allowed to grow with a measure
of the Department Faculty presence in community projects
and with the number of research papers published. Positive
signs in the coefficients of these second level variables
reflect the contention that the rates of resource utilization
increase with the quality of the education offered to
students. The model presents a third level of explanation,
where these coefficients are modeled as been reduced by the
presence of management resources, that would make easier
to the Faculty to offer better service. Other explanatory
variables might appear at this level to take into account
specific aspects of the production process of departments
belonging to different areas.

Another philosophical approach would separate the
results of Teaching and Research. We might also add a
third explanatory variable measuring the amount of
Extension services. The interaction between the activities
leading to final products measured under each of these three
headings may difficult the estimation. On the other side, it
may be useful to fit such a model to evaluate the effect on
productivity of concentrating on each of these fields.

The production variables for this second model will
not be so straightforward as those in the first model. In
order to choose relevant and reliable observable variables
and weights to combine them into measurements of
Teaching, Research and Extension we must involve
specialists of the different areas of knowledge. Tools for
quantifying preferences should be developed to deal with
this problem in such a way as to serve also the goal of
calling attention for quality management aspects. Frequent
revision of weights should be exploited with this same
purpose.

The adjustment of a structural model with the
parameters of the first level equation modeled to explore the
possibility of being specialization the reason of
technological or managerial improvements that reflect on
productivity can be compared with that of an unstructured
model. In order to take into account the operational scale in
terms of each output, that means specialization, we can
choose as second level explanatory variables indicators like
the ratios input/output for each output. These explanatory
variables may be used to explain the respective production
function coefficients or may be combined in a new factor
used to explain any of the first level coefficients.

FINAL COMMENTS

Only after modeling academic production as varying
systematically from one university department to another
and then explicitly modeling efficiency, we are able to



compare performances in an instructive way. If it is verified
that a structured model fits the data, their technical
coefficients not only set a goal towards which the other
departments should move, but also hint on ways to reach
such goal.

Assuming productivity coefficients varying through
observational units we can estimate local parameters even
when the observations are subject to small disturbances. A
hierarchical model built by allowing the production
coefficients to vary according to second level observable
factors gives, if not the best efficiency estimates, the best
way to analyze the differences in efficiency. 

On the other side, just detecting unexplained
components, constant coefficients regression residuals hint
on units that should be objet of further analysis but do not
provide a suitable basis to access efficiency. Observed to
average or regression predicted values ratios can offer
sensible efficiency measurements in the case of two groups
of production units similarly sprayed on the production
space, one of them less efficient than the other. But, if
efficiency extremes are in a very small set of units, the
predictions obtained by fitting a global model should be
expected to be distorted. In that case, even from the point of
view of selecting observation units to deeper analysis, fitting
a different equation for each observation unit is more
informative.

 The first estimates of varying coefficients will be
based on a relatively small data set and shall not be very
reliable. But, in an iterative modeling and estimation
approach, we are always improving on them. And deriving
model improvement from local analysis of units sampled by
bad fit has the advantage of attracting specialists in the
departments to think about quality and to act on it.
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